Nothing
#' Perform Unit Normalization
#'
#' `step_unit_normalize()` creates a *specification* of a recipe step that will
#' perform unit normalization by scaling individual samples to have unit norm.
#'
#' @inheritParams recipes::step_center
#' @param ... One or more selector functions to choose which variables are
#' affected by the step. See [recipes::selections()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param norm Character denoting which type of normalization to perform. Must
#' be one of `"l1"`, `"l2"`, or "`"max"`.
#' @param columns A character string of variable names that will be populated
#' (eventually) by the `terms` argument.
#' @return An updated version of `recipe` with the new step added to the
#' sequence of existing steps (if any). For the `tidy` method, a tibble with
#' columns `terms` (the columns that will be affected) and `base`.
#' @export
#' @examples
#' library(recipes)
#'
#' rec <- recipe(~., data = mtcars) %>%
#' step_unit_normalize(all_predictors()) %>%
#' prep()
#'
#' rec %>%
#' bake(new_data = NULL)
#'
#' tidy(rec, 1)
step_unit_normalize <-
function(recipe,
...,
role = NA,
trained = FALSE,
norm = c("l2", "l1", "max"),
columns = NULL,
skip = FALSE,
id = rand_id("unit_normalize")
) {
add_step(
recipe,
step_unit_normalize_new(
terms = enquos(...),
role = role,
trained = trained,
norm = norm,
columns = columns,
skip = skip,
id = id
)
)
}
step_unit_normalize_new <-
function(terms, role, trained, norm, columns, skip, id) {
step(
subclass = "unit_normalize",
terms = terms,
role = role,
trained = trained,
norm = norm,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_unit_normalize <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
step_unit_normalize_new(
terms = x$terms,
role = x$role,
trained = TRUE,
norm = x$norm,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_unit_normalize <- function(object, new_data, ...) {
col_names <- object$columns
# for backward compat
if (length(col_names) == 0) {
return(new_data)
}
new_data[, col_names] <- unit_normalize_apply(
new_data[, col_names, drop = FALSE],
norm = object$norm
)
new_data
}
unit_normalize_apply <- function(x, norm = c("l2", "l1", "max")) {
norm <- match.arg(norm)
if (norm == "l2") {
res <- x / sqrt(rowSums(x ^ 2))
}
if (norm == "l1") {
res <- x / rowSums(abs(x))
}
if (norm == "max") {
res <- x / apply(abs(x), 1, max)
}
res
}
#' @export
print.step_unit_normalize <-
function(x, width = max(20, options()$width - 31), ...) {
cat("Unit Normalization on ", sep = "")
printer(x$columns, x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_unit_normalize
#' @usage NULL
#' @export
tidy.step_unit_normalize <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$columns)
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names
)
}
res$id <- x$id
res
}
#' @rdname required_pkgs.extrasteps
#' @export
required_pkgs.step_unit_normalize <- function(x, ...) {
c("extrasteps")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.