eyeris
: Flexible, Extensible, & Reproducible Pupillometry Preprocessing eyerisβ
development and operational
insights with our new
eyeris
DevOps Dashboard!
Despite decades of pupillometry research, many established packages and
workflows unfortunately lack design principles based on (F)indability
(A)ccessbility (I)nteroperability (R)eusability (FAIR) principles.
eyeris
, on the other hand follows a thoughtful design philosophy that
results in an intuitive, modular, performant, and extensible
pupillometry data preprocessing framework. Much of these design
principles were heavily inspired by Nipype
.
eyeris
also provides a highly opinionated pipeline for tonic and
phasic pupillometry preprocessing (inspired by fMRIPrep
). These
opinions are the product of many hours of discussions from core members
and signal processing experts from the Stanford Memory Lab (Shawn
Schwartz, Mingjian He, Haopei Yang, Alice Xue, and Anthony Wagner).
eyeris
also introduces a BIDS
-like structure for organizing
derivative (preprocessed) pupillometry data, as well as an intuitive
workflow for inspecting preprocessed pupillometry epochs within
beautiful, interactive HTML report files (see demonstration below β¬)!
The package also includes gaze heatmaps that show the distribution of
eye coordinates across the entire screen area, helping you assess data
quality and participant attention patterns. These heatmaps are
automatically generated in the BIDS reports and can also be created
manually.
π¦ Modular Design
: Each preprocessing step is a standalone function
that can be used independently or combined into custom pipelines.π Interactive Reports
: Beautiful, interactive HTML reports that
summarize preprocessing steps and visualize data quality.π Flexible Extensions
: Easily create custom extensions to the
preprocessing pipeline by writing your own functions and adding them
to the pipeline.π Data Quality Assessment
: Automatically generated figures of each
preprocessing step and its effect on the pupil signal (at the global
and trial levels), as well as gaze heatmaps and binocular correlation
plots to assess data quality and participant attention patterns.ποΈ BIDS-like File Structure
: Organizes preprocessed data using a
BIDS-like directory structure that supports both monocular and
binocular eye-tracking data.π Logging Commands
: Automatically capture all console output and
errors to timestamped log files.Below is a table of all main eyeris
functions, organized by feature,
with links to their documentation and a brief description.
| Feature | Function Documentation | Description |
|----|----|----|
| Pipeline Orchestration | glassbox() | Run the full recommended preprocessing pipeline with a single function call. |
| BIDSify | bidsify() | Create a BIDS-like directory structure for preprocessed data as well as interactive HTML reports for data and signal processing provenance. |
| Data Loading | load_asc() | Load EyeLink .asc
files into an eyeris
object. |
| Blink Artifact Removal | deblink() | Remove blink artifacts by extending and masking missing samples. |
| Transient (Speed-Based) Artifact Removal | detransient() | Remove transient spikes in the pupil signal using a moving MAD filter. |
| Linear Interpolation | interpolate() | Interpolate missing (NA) samples in the pupil signal. |
| Lowpass Filtering | lpfilt() | Apply a Butterworth lowpass filter to the pupil signal. |
| Downsampling | downsample() | Downsample the pupil signal to a lower sampling rate. |
| Binning | bin() | Bin pupil data into specified time bins using mean or median. |
| Detrending | detrend() | Remove slow drifts from the pupil signal by linear detrending. |
| Z-scoring | zscore() | Z-score the pupil signal within each block. |
| Confound Summary | summarize_confounds() | Summarize and visualize confounding variables for each preprocessing step. |
| Epoching & Baselining | epoch() | Extract time-locked epochs from the continuous pupil signal. |
| Plotting | plot() | Plot the pupil signal and preprocessing steps. |
| Gaze Heatmaps | plot_gaze_heatmap() | Generate heatmaps of gaze position across the screen. |
| Binocular Correlation | plot_binocular_correlation() | Compute correlation between left and right eye pupil signals. |
| Demo (Monocular) Dataset | eyelink_asc_demo_dataset() | Load a demo monocular recording EyeLink dataset for testing and examples. |
| Demo (Binocular) Dataset | eyelink_asc_binocular_demo_dataset() | Load a demo binocular recording EyeLink dataset for testing and examples. |
| Logging Commands | eyelogger() | Automatically capture all console output and errors to timestamped log files. |
| Custom Extensions | See vignette: Custom Extensions | Learn how to write your own pipeline steps and integrate them with eyeris
. |
For a full list of all functions, see the eyeris reference index.
You can install the stable release of eyeris
from
CRAN with:
install.packages("eyeris")
or
# install.packages("pak")
pak::pak("eyeris")
You can install the development version of eyeris
from
GitHub with:
# install.packages("devtools")
devtools::install_github("shawntz/eyeris", ref = "dev")
glassbox()
βprescriptionβ functionThis is a basic example of how to use eyeris
out of the box with our
very opinionated set of steps and parameters that one should start out
with when preprocessing pupillometry data. Critically, this is a
βglassboxβ β as opposed to a βblackboxβ β since each step and parameter
implemented herein is fully open and accessible to you. We designed each
pipeline step / function to be like a LEGO brick β they are
intentionally and carefully designed in a way that allows you to
flexibly construct and compare different pipelines.
We hope you enjoy! -Shawn
set.seed(32)
library(eyeris)
#>
#> eyeris v2.1.1 - Lumpy Space Princess κ°β’α΄β’qκ±ΫΆ
#> Welcome! Type ?`eyeris` to get started.
demo_data <- eyelink_asc_demo_dataset()
eyeris_preproc <- glassbox(
demo_data,
lpfilt = list(plot_freqz = FALSE)
)
#> β [OKAY] Running eyeris::load_asc()
#> βΉ [INFO] Processing block: block_1
#> β [OKAY] Running eyeris::deblink() for block_1
#> β [OKAY] Running eyeris::detransient() for block_1
#> β [OKAY] Running eyeris::interpolate() for block_1
#> β [OKAY] Running eyeris::lpfilt() for block_1
#> ! [WARN] Skipping eyeris::downsample() for block_1
#> ! [WARN] Skipping eyeris::bin() for block_1
#> ! [WARN] Skipping eyeris::detrend() for block_1
#> β [OKAY] Running eyeris::zscore() for block_1
#> βΉ [INFO] Block processing summary:
#> βΉ [INFO] block_1: OK (steps: 6, latest: pupil_raw_deblink_detransient_interpolate_lpfilt_z)
#> β [OKAY] Running eyeris::summarize_confounds()
plot(eyeris_preproc, add_progressive_summary = TRUE)
start_time <- min(eyeris_preproc$timeseries$block_1$time_secs)
end_time <- max(eyeris_preproc$timeseries$block_1$time_secs)
plot(eyeris_preproc,
# steps = c(1, 5), # uncomment to specify a subset of preprocessing steps to plot; by default, all steps will plot in the order in which they were executed by eyeris
preview_window = c(start_time, end_time),
add_progressive_summary = TRUE
)
#> βΉ [INFO] Plotting block 1 from possible blocks: 1
#> βΉ [INFO] Plotting with sampling rate: 1000 Hz
#> βΉ [INFO] Creating progressive summary plot for block_1
#> β [OKAY] Progressive summary plot created successfully!
plot_gaze_heatmap(
eyeris = eyeris_preproc,
block = 1
)
eyeris
organizes preprocessed data using a BIDS-like directory
structure that supports both monocular and binocular eye-tracking data.
The bidsify()
function creates a standardized directory hierarchy with
separate organization for different data types.
For single-eye recordings, data are organized in the main eye directory:
bids_dir/
βββ derivatives/
βββ sub-001/
βββ ses-01/
βββ sub-001.html
βββ eye/
βββ sub-001_ses-01_task-test_run-01_desc-timeseries_eye.csv
βββ sub-001_ses-01_task-test_run-01_desc-confounds.csv
βββ sub-001_ses-01_task-test_run-01_epoch-stimulus_desc-preproc_pupil.csv
βββ sub-001_ses-01_task-test_run-01_baseline-stimulus_desc-preproc_pupil.csv
βββ sub-001_ses-01_task-test_run-01_events.csv
βββ sub-001_ses-01_task-test_run-01_blinks.csv
βββ sub-001_ses-01_task-test_run-01_summary.csv
βββ sub-001_ses-01_task-test_run-01.html
βββ source/
βββ figures/
β βββ run-01/
β βββ run-01_fig-1_deblink.jpg
β βββ run-01_fig-2_detrend.jpg
β βββ run-01_fig-3_interpolate.jpg
β βββ run-01_fig-4_lpfilt.jpg
β βββ run-01_fig-5_zscore.jpg
β βββ run-01_gaze_heatmap.png
β βββ run-01_detrend.png
β βββ run-01_desc-progressive_summary.png
βββ logs/
βββ run-01_metadata.json
For binocular recordings, data are organized into separate left
and
right
eye subdirectories:
bids_dir/
βββ derivatives/
βββ sub-001/
βββ ses-01/
βββ sub-001-L.html
βββ sub-001-R.html
βββ eye-L/
β βββ sub-001_ses-01_task-test_run-01_desc-timeseries_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_desc-confounds_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_epoch-stimulus_desc-preproc_pupil_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_baseline-stimulus_desc-preproc_pupil_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_events_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_blinks_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_summary_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_eye-L.html
β βββ source/
β βββ figures/
β β βββ run-01/
β βββ logs/
β βββ run-01_metadata.json
βββ eye-R/
βββ sub-001_ses-01_task-test_run-01_desc-timeseries_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_desc-confounds_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_epoch-stimulus_desc-preproc_pupil_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_baseline-stimulus_desc-preproc_pupil_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_events_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_blinks_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_summary_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_eye-R.html
βββ source/
βββ figures/
β βββ run-01/
βββ logs/
βββ run-01_metadata.json
All files follow a consistent BIDS-like naming pattern:
desc-timeseries_eye
(with _eye-L
or _eye-R
suffix for binocular data)desc-confounds
(with eye suffix for binocular data)epoch-{event}_desc-preproc_pupil
(with eye suffix for
binocular data)baseline-{event}_desc-preproc_pupil
(with eye suffix
for binocular data)events
(with eye suffix for binocular data)blinks
(with eye suffix for binocular data)The events and blinks CSV files contain the raw event markers and blink detection data as stored in the eyeris object:
Events file structure:
block
: Block/run numbertime
: Timestamp of the eventtext
: Raw event text from the ASC filetext_unique
: Unique event identifierBlinks file structure:
block
: Block/run numberstime
: Start time of the blinketime
: End time of the blinkdur
: Duration of the blink in millisecondseye
: Eye identifier (L/R for binocular data)eyeris
commands with eyelogger()
eyeris
organizes preprocessed data using a BIDS-like directory
structure that supports both monocular and binocular eye-tracking data.
The bidsify()
function creates a standardized directory hierarchy with
separate organization for different data types.
For single-eye recordings, data are organized in the main eye directory:
bids_dir/
βββ derivatives/
βββ sub-001/
βββ ses-01/
βββ sub-001.html
βββ eye/
βββ sub-001_ses-01_task-test_run-01_desc-timeseries_eye.csv
βββ sub-001_ses-01_task-test_run-01_desc-confounds.csv
βββ sub-001_ses-01_task-test_run-01_epoch-stimulus_desc-preproc_pupil.csv
βββ sub-001_ses-01_task-test_run-01_baseline-stimulus_desc-preproc_pupil.csv
βββ sub-001_ses-01_task-test_run-01_events.csv
βββ sub-001_ses-01_task-test_run-01_blinks.csv
βββ sub-001_ses-01_task-test_run-01_summary.csv
βββ sub-001_ses-01_task-test_run-01.html
βββ source/
βββ figures/
β βββ run-01/
β βββ run-01_fig-1_deblink.jpg
β βββ run-01_fig-2_detrend.jpg
β βββ run-01_fig-3_interpolate.jpg
β βββ run-01_fig-4_lpfilt.jpg
β βββ run-01_fig-5_zscore.jpg
β βββ run-01_gaze_heatmap.png
β βββ run-01_detrend.png
β βββ run-01_desc-progressive_summary.png
βββ logs/
βββ run-01_metadata.json
For binocular recordings, data are organized into separate left
and
right
eye subdirectories:
bids_dir/
βββ derivatives/
βββ sub-001/
βββ ses-01/
βββ sub-001-L.html
βββ sub-001-R.html
βββ eye-L/
β βββ sub-001_ses-01_task-test_run-01_desc-timeseries_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_desc-confounds_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_epoch-stimulus_desc-preproc_pupil_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_baseline-stimulus_desc-preproc_pupil_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_events_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_blinks_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_summary_eye-L.csv
β βββ sub-001_ses-01_task-test_run-01_eye-L.html
β βββ source/
β βββ figures/
β β βββ run-01/
β βββ logs/
β βββ run-01_metadata.json
βββ eye-R/
βββ sub-001_ses-01_task-test_run-01_desc-timeseries_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_desc-confounds_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_epoch-stimulus_desc-preproc_pupil_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_baseline-stimulus_desc-preproc_pupil_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_events_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_blinks_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_summary_eye-R.csv
βββ sub-001_ses-01_task-test_run-01_eye-R.html
βββ source/
βββ figures/
β βββ run-01/
βββ logs/
βββ run-01_metadata.json
All files follow a consistent BIDS-like naming pattern:
desc-timeseries_eye
(with _eye-L
or _eye-R
suffix for binocular data)desc-confounds
(with eye suffix for binocular data)epoch-{event}_desc-preproc_pupil
(with eye suffix for
binocular data)baseline-{event}_desc-preproc_pupil
(with eye suffix
for binocular data)events
(with eye suffix for binocular data)blinks
(with eye suffix for binocular data)The events and blinks CSV files contain the raw event markers and blink detection data as stored in the eyeris object:
Events file structure:
block
: Block/run numbertime
: Timestamp of the eventtext
: Raw event text from the ASC filetext_unique
: Unique event identifierBlinks file structure:
block
: Block/run numberstime
: Start time of the blinketime
: End time of the blinkdur
: Duration of the blink in millisecondseye
: Eye identifier (L/R for binocular data)eyeris
commands with eyelogger()
The eyelogger()
utility lets you run any eyeris
command (or block of
R code) while automatically capturing all console output and errors to
timestamped log files. This is especially useful for reproducibility,
debugging, or running batch jobs.
How it works:
stdout
) and standard error (stderr
) are saved
to log files in a directory you specify (or a temporary directory by
default).<timestamp>.out
: all console output<timestamp>.err
: all warnings and errorsYou can wrap any eyeris
command or block of code in
eyelogger({ ... })
:
library(eyeris)
# log a simple code block with messages, warnings, and prints
eyelogger({
message("eyeris `glassbox()` completed successfully.")
warning("eyeris `glassbox()` completed with warnings.")
print("some eyeris-related information.")
})
# log a real eyeris pipeline run, saving logs to a custom directory
log_dir <- file.path(tempdir(), "eyeris_logs")
eyelogger({
glassbox(eyelink_asc_demo_dataset(), interactive_preview = FALSE)
}, log_dir = log_dir)
eyeris_cmd
: The code to run (wrap in {}
for multiple lines).log_dir
: Directory to save logs (default: a temporary directory).timestamp_format
: Format for log file names (default:
"%Y%m%d_%H%M%S"
).After running, youβll find log files in your specified directory, e.g.:
20240614_153012.out # console output
20240614_153012.err # warnings and errors
This makes it easy to keep a record of your preprocessing runs and debug any issues that arise.
eyeris
dependency grapheyeris
Thank you for considering contributing to the open-source eyeris
R
package; there are many ways one could contribute to eyeris
.
We believe the best preprocessing practices emerge from collective expertise and rigorous discussion. Please see the contribution guidelines for more information on how to get started..
Please note that the eyeris project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
Please use the issues tab (https://github.com/shawntz/eyeris/issues) to make note of any bugs, comments, suggestions, feedback, etc⦠all are welcomed and appreciated, thanks!
eyeris
citation("eyeris")
#> To cite package 'eyeris' in publications use:
#>
#> Schwartz ST, Yang H, Xue AM, He M (2025). "eyeris: A flexible,
#> extensible, and reproducible pupillometry preprocessing framework in
#> R." _bioRxiv_, 1-37. doi:10.1101/2025.06.01.657312
#> <https://doi.org/10.1101/2025.06.01.657312>.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Article{,
#> title = {eyeris: A flexible, extensible, and reproducible pupillometry preprocessing framework in R},
#> author = {Shawn T Schwartz and Haopei Yang and Alice M Xue and Mingjian He},
#> journal = {bioRxiv},
#> year = {2025},
#> pages = {1--37},
#> doi = {10.1101/2025.06.01.657312},
#> }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.