Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE,
fig.path = "../man/figures/")
knitr::opts_chunk$set(warning = FALSE) # suppress warnings for easier reading
## ----install, eval=FALSE------------------------------------------------------
# install.packages('eyetools')
## ----library_eyetools---------------------------------------------------------
library(eyetools)
## ----get_data-----------------------------------------------------------------
data(HCL, package = "eyetools")
dim(HCL)
## ----show_data----------------------------------------------------------------
head(HCL, 10)
## ----combine------------------------------------------------------------------
data <- combine_eyes(HCL)
## ----show_data_combined-------------------------------------------------------
head(data) # participant 118
## ----interpolate--------------------------------------------------------------
data <- interpolate(data, maxgap = 150, method = "approx")
## ----interpolate_report-------------------------------------------------------
interpolate_report <- interpolate(data, maxgap = 150, method = "approx", report = TRUE)
interpolate_report[[2]]
## ----smooth-------------------------------------------------------------------
set.seed(0410) #set seed to show same participant and trials in both chunks
data_smooth <- smoother(data,
span = .1, # default setting. This controls the degree of smoothing
plot = TRUE) # whether to plot or not, FALSE as default
## ----smooth_2-----------------------------------------------------------------
set.seed(0410) #set seed to show same participant and trials in both chunks
data_smooth <- smoother(data,
span = .02,
plot = TRUE)
## ----view_beh_data------------------------------------------------------------
data_behavioural <- HCL_behavioural # behavioural data
head(data_behavioural)
## ----merge_data---------------------------------------------------------------
data <- merge(data_smooth, data_behavioural) # merges with the common variables pNum and trial
data <- conditional_transform(data,
flip = "x", #flip across x midline
cond_column = "cue_order", #this column holds the counterbalance information
cond_values = "2",#which values in cond_column to flip
message = FALSE) #suppress message that would repeat "Flipping across x midline"
## ----fix_disp-----------------------------------------------------------------
data_fixations_disp <- fixation_dispersion(data,
min_dur = 150, # Minimum duration (in milliseconds) of period over which fixations are assessed
disp_tol = 100, # Maximum tolerance (in pixels) for the dispersion of values allowed over fixation period
NA_tol = 0.25, # the proportion of NAs tolerated within any window of samples evaluated as a fixation
progress = FALSE) # whether to display a progress bar or not
## ----show_fix_disp------------------------------------------------------------
head(data_fixations_disp) # show sample of output data
## ----fix_vti------------------------------------------------------------------
data_fixations_VTI <- fixation_VTI(data,
threshold = 80, #smoothed data, so use a lower threshold
min_dur = 150, # Minimum duration (in milliseconds) of period over which fixations are assessed
min_dur_sac = 20, # Minimum duration (in milliseconds) for saccades to be determined
disp_tol = 100, # Maximum tolerance (in pixels) for the dispersion of values allowed over fixation period
smooth = FALSE,
progress = FALSE) # whether to display a progress bar or not, when running multiple participants
## ----show_fix_vti-------------------------------------------------------------
head(data_fixations_VTI) # show sample of output data for participant 118
## ----saccade_VTI--------------------------------------------------------------
saccades <- saccade_VTI(data)
head(saccades)
## ----compare_fix_alg----------------------------------------------------------
#some functions are best with single-participant data
data_119 <- data[data$pID == 119,]
comparison <- compare_algorithms(data_119,
plot_fixations = TRUE,
print_summary = TRUE,
sample_rate = NULL,
threshold = 80, #lowering the default threshold produces a better result when using smoothed data
min_dur = 150,
min_dur_sac = 20,
disp_tol = 100,
NA_tol = 0.25,
smooth = FALSE)
## ----set_AOIs-----------------------------------------------------------------
# set areas of interest
AOI_areas <- data.frame(matrix(nrow = 3, ncol = 4))
colnames(AOI_areas) <- c("x", "y", "width_radius", "height")
AOI_areas[1,] <- c(460, 840, 400, 300) # Left cue
AOI_areas[2,] <- c(1460, 840, 400, 300) # Right cue
AOI_areas[3,] <- c(960, 270, 300, 500) # outcomes
AOI_areas
## ----AOI_time-----------------------------------------------------------------
data_AOI_time <- AOI_time(data = data_fixations_disp,
data_type = "fix",
AOIs = AOI_areas)
head(data_AOI_time, 10)
## ----AOI_time_2---------------------------------------------------------------
AOI_time(data = data_fixations_disp,
data_type = "fix",
AOIs = AOI_areas,
as_prop = TRUE,
trial_time = HCL_behavioural$RT) #vector of trial times
## ----AOI_time_3---------------------------------------------------------------
AOI_time(data = data, data_type = "raw", AOIs = AOI_areas)
## ----binned_time--------------------------------------------------------------
binned_time <- AOI_time_binned(data = data_119,
AOIs = AOI_areas,
bin_length = 100,
max_time = 2000,
as_prop = TRUE)
head(binned_time)
## ----AOI_seq------------------------------------------------------------------
data_AOI_sequence <- AOI_seq(data_fixations_disp,
AOI_areas,
AOI_names = NULL)
head(data_AOI_sequence)
## ----plot_seq-----------------------------------------------------------------
plot_seq(data, pID_values = 119, trial_values = 1)
## ----plot_seq_2---------------------------------------------------------------
plot_seq(data, pID_values = 119, trial_values = 1, bg_image = "data/HCL_sample_image.png") # add background image
plot_seq(data, pID_values = 119, trial_values = 1, AOIs = AOI_areas) # add AOIs
## ----plot_seq_3---------------------------------------------------------------
plot_seq(data, pID_values = 119, trial_values = 1, AOIs = AOI_areas, bin_time = 1000)
## ----plot_spatial-------------------------------------------------------------
plot_spatial(raw_data = data, pID_values = 119, trial_values = 6)
plot_spatial(fix_data = fixation_dispersion(data), pID_values = 119, trial_values = 6)
plot_spatial(sac_data = saccade_VTI(data), pID_values = 119, trial_values = 6)
## ----plot_spatial_2-----------------------------------------------------------
plot_spatial(raw_data = data_119,
fix_data = fixation_dispersion(data_119),
sac_data = saccade_VTI(data_119),
pID_values = 119,
trial_values = 6)
## ----plot_AOI_growth----------------------------------------------------------
#standard plot with absolute time
plot_AOI_growth(data = data,
pID_values = 119,
trial_values = 1,
AOIs = AOI_areas,
type = "abs")
#standard plot with proportional time
plot_AOI_growth(data = data,
pID_values = 119,
trial_values = 1,
AOIs = AOI_areas,
type = "prop")
#only keep predictive and non-predictive cues rather than the target AOI
plot_AOI_growth(data = data, pID_values = 119, trial_values = 1,
AOIs = AOI_areas,
type = "prop",
AOI_names = c("Predictive", "Non Predictive", NA))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.