| gh | R Documentation |
Density, distribution function, quantile function and random generation for the generalized hyperbolic distribution.
dgh(x, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2, log = FALSE)
pgh(q, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
qgh(p, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
rgh(n, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
x, q |
a numeric vector of quantiles. |
p |
a numeric vector of probabilities. |
n |
number of observations. |
alpha |
first shape parameter. |
beta |
second shape parameter, should in the range |
delta |
scale parameter, must be zero or positive. |
mu |
location parameter, by default 0. |
lambda |
defines the sublclass, by default |
log |
a logical flag by default |
dgh gives the density,
pgh gives the distribution function,
qgh gives the quantile function, and
rgh generates random deviates.
The meanings of the parameters correspond to the first
parameterization, pm=1, which is the default parameterization
for this distribution.
In the second parameterization, pm=2, alpha and
beta take the meaning of the shape parameters (usually named)
zeta and rho.
In the third parameterization, pm=3, alpha and
beta take the meaning of the shape parameters (usually named)
xi and chi.
In the fourth parameterization, pm=4, alpha and
beta take the meaning of the shape parameters (usually named)
a.bar and b.bar.
The generator rgh is based on the GH algorithm given
by Scott (2004).
numeric vector
David Scott for code implemented from R's
contributed package HyperbolicDist.
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.
## rgh -
set.seed(1953)
r = rgh(5000, alpha = 1, beta = 0.3, delta = 1)
plot(r, type = "l", col = "steelblue",
main = "gh: alpha=1 beta=0.3 delta=1")
## dgh -
# Plot empirical density and compare with true density:
hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue")
x = seq(-5, 5, 0.25)
lines(x, dgh(x, alpha = 1, beta = 0.3, delta = 1))
## pgh -
# Plot df and compare with true df:
plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
lines(x, pgh(x, alpha = 1, beta = 0.3, delta = 1))
## qgh -
# Compute Quantiles:
qgh(pgh(seq(-5, 5, 1), alpha = 1, beta = 0.3, delta = 1),
alpha = 1, beta = 0.3, delta = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.