dist-nig: Normal Inverse Gaussian Distribution In fBasics: Rmetrics - Markets and Basic Statistics

Description

Density, distribution function, quantile function and random generation for the normal inverse Gaussian distribution.

Usage

 1 2 3 4 dnig(x, alpha = 1, beta = 0, delta = 1, mu = 0, log = FALSE) pnig(q, alpha = 1, beta = 0, delta = 1, mu = 0) qnig(p, alpha = 1, beta = 0, delta = 1, mu = 0) rnig(n, alpha = 1, beta = 0, delta = 1, mu = 0)

Arguments

 alpha, beta, delta, mu shape parameter alpha; skewness parameter beta, abs(beta) is in the range (0, alpha); scale parameter delta, delta must be zero or positive; location parameter mu, by default 0. These are the parameters in the first parameterization. log a logical flag by default FALSE. Should labels and a main title drawn to the plot? n number of observations. p a numeric vector of probabilities. x, q a numeric vector of quantiles.

Details

The random deviates are calculated with the method described by Raible (2000).

Value

All values for the *nig functions are numeric vectors: d* returns the density, p* returns the distribution function, q* returns the quantile function, and r* generates random deviates.

All values have attributes named "param" listing the values of the distributional parameters.

Author(s)

David Scott for code implemented from R's contributed package HyperbolicDist.

References

Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.

Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.

Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.

Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.

Examples

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ## nig - set.seed(1953) r = rnig(5000, alpha = 1, beta = 0.3, delta = 1) plot(r, type = "l", col = "steelblue", main = "nig: alpha=1 beta=0.3 delta=1") ## nig - # Plot empirical density and compare with true density: hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue") x = seq(-5, 5, 0.25) lines(x, dnig(x, alpha = 1, beta = 0.3, delta = 1)) ## nig - # Plot df and compare with true df: plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue") lines(x, pnig(x, alpha = 1, beta = 0.3, delta = 1)) ## nig - # Compute Quantiles: qnig(pnig(seq(-5, 5, 1), alpha = 1, beta = 0.3, delta = 1), alpha = 1, beta = 0.3, delta = 1)

fBasics documentation built on March 13, 2020, 9:09 a.m.