View source: R/garch-SolverControl.R
garchFitControl | R Documentation |
Control parameters for the GARCH fitting algorithms.
garchFitControl(
llh = c("filter", "internal", "testing"),
nlminb.eval.max = 2000,
nlminb.iter.max = 1500,
nlminb.abs.tol = 1.0e-20,
nlminb.rel.tol = 1.0e-14,
nlminb.x.tol = 1.0e-14,
nlminb.step.min = 2.2e-14,
nlminb.scale = 1,
nlminb.fscale = FALSE,
nlminb.xscale = FALSE,
sqp.mit = 200,
sqp.mfv = 500,
sqp.met = 2,
sqp.mec = 2,
sqp.mer = 1,
sqp.mes = 4,
sqp.xmax = 1.0e3,
sqp.tolx = 1.0e-16,
sqp.tolc = 1.0e-6,
sqp.tolg = 1.0e-6,
sqp.told = 1.0e-6,
sqp.tols = 1.0e-4,
sqp.rpf = 1.0e-4,
lbfgsb.REPORT = 10,
lbfgsb.lmm = 20,
lbfgsb.pgtol = 1e-14,
lbfgsb.factr = 1,
lbfgsb.fnscale = FALSE,
lbfgsb.parscale = FALSE,
nm.ndeps = 1e-14,
nm.maxit = 10000,
nm.abstol = 1e-14,
nm.reltol = 1e-14,
nm.alpha = 1.0,
nm.beta = 0.5,
nm.gamma = 2.0,
nm.fnscale = FALSE,
nm.parscale = FALSE)
llh |
|
nlminb.eval.max |
maximum number of evaluations of the objective function, defaults to 200. |
nlminb.iter.max |
maximum number of iterations, defaults to 150. |
nlminb.abs.tol |
absolute tolerance, defaults to 1e-20. |
nlminb.rel.tol |
relative tolerance, defaults to 1e-10. |
nlminb.x.tol |
X tolerance, defaults to 1.5e-8. |
nlminb.fscale |
defaults to FALSE. |
nlminb.xscale |
defaulkts to FALSE. |
nlminb.step.min |
minimum step size, defaults to 2.2e-14. |
nlminb.scale |
defaults to 1. |
sqp.mit |
maximum number of iterations, defaults to 200. |
sqp.mfv |
maximum number of function evaluations, defaults to 500. |
sqp.met |
specifies scaling strategy: |
sqp.mec |
correction for negative curvature: |
sqp.mer |
restarts after unsuccessful variable metric updates: |
sqp.mes |
interpolation method selection in a line search: |
sqp.xmax |
maximum stepsize, defaults to 1.0e+3. |
sqp.tolx |
tolerance for the change of the coordinate vector, defaults to 1.0e-16. |
sqp.tolc |
tolerance for the constraint violation, defaults to 1.0e-6. |
sqp.tolg |
tolerance for the Lagrangian function gradient, defaults to 1.0e-6. |
sqp.told |
defaults to 1.0e-6. |
sqp.tols |
defaults to 1.0e-4. |
sqp.rpf |
value of the penalty coefficient, default to1.0D-4. The default velue may be relatively small. Therefore, larger value, say one, can sometimes be more suitable. |
lbfgsb.REPORT |
the frequency of reports for the |
lbfgsb.lmm |
an integer giving the number of BFGS updates retained in
the |
lbfgsb.factr |
controls the convergence of the |
lbfgsb.pgtol |
helps control the convergence of the |
lbfgsb.fnscale |
defaults to FALSE. |
lbfgsb.parscale |
defaults to FALSE. |
nm.ndeps |
a vector of step sizes for the finite-difference approximation to the gradient, on par/parscale scale. Defaults to 1e-3. |
nm.maxit |
the maximum number of iterations. Defaults to 100 for the
derivative-based methods, and 500 for |
nm.abstol |
the absolute convergence tolerance. Only useful for non-negative functions, as a tolerance for reaching zero. |
nm.reltol |
relative convergence tolerance. The algorithm stops if it is
unable to reduce the value by a factor of
|
nm.alpha , nm.beta , nm.gamma |
scaling parameters for the "Nelder-Mead" method. alpha is the reflection factor (default 1.0), beta the contraction factor (0.5), and gamma the expansion factor (2.0). |
nm.fnscale |
an overall scaling to be applied to the value of fn and gr
during optimization. If negative, turns the problem into a
maximization problem. Optimization is performed on
|
nm.parscale |
a vector of scaling values for the parameters. Optimization is performed on par/parscale and these should be comparable in the sense that a unit change in any element produces about a unit change in the scaled value. |
a list
Diethelm Wuertz for the Rmetrics R-port,
R Core Team for the 'optim' R-port,
Douglas Bates and Deepayan Sarkar for the 'nlminb' R-port,
Bell-Labs for the underlying PORT Library,
Ladislav Luksan for the underlying Fortran SQP Routine,
Zhu, Byrd, Lu-Chen and Nocedal for the underlying L-BFGS-B Routine.
garchFit
##
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.