predict-methods | R Documentation |
Predicts a time series from a fitted GARCH object.
## S4 method for signature 'fGARCH'
predict(object, n.ahead = 10, trace = FALSE, mse = c("cond","uncond"),
plot=FALSE, nx=NULL, crit_val=NULL, conf=NULL, ..., p_loss = NULL)
n.ahead |
an integer value, denoting the number of steps to be forecasted, by default 10. |
object |
an object of class |
trace |
a logical flag. Should the prediction process be traced?
By default |
mse |
If set to |
plot |
If set to |
nx |
The number of observations to be plotted along with the
predictions. The default is |
crit_val |
The critical values for the confidence intervals when
|
conf |
The confidence level for the confidence intervals if
|
... |
additional arguments to be passed. |
p_loss |
if not null, compute predictions for VaR and ES for loss level
|
The predictions are returned as a data frame with columns
"meanForecast"
, "meanError"
, and
"standardDeviation"
. Row h
contains the predictions for
horizon h
(so, n.ahead
rows in total).
If plot = TRUE
, the data frame contain also the prediction
limits for each horizon in columns lowerInterval
and
upperInterval
.
If p_loss
is not NULL, predictions of Value-at-Risk (VaR) and
Expected Shortfall (ES) are returned in columns VaR
and
ES
. The data frame has attribute "p_loss"
containing
p_loss
. Typical values for p_loss
are 0.01 and 0.05.
These are somewhat experimental and the arguments and the returned values may change.
a data frame containing n.ahead
rows and 3 to 7 columns,
see section ‘Details’
Diethelm Wuertz for the Rmetrics R-port
predict
in base R
fitted
,
residuals
,
plot
,
garchFit
,
class fGARCH
,
## Parameter Estimation of Default GARCH(1,1) Model
set.seed(123)
fit = garchFit(~ garch(1, 1), data = garchSim(), trace = FALSE)
fit
## predict
predict(fit, n.ahead = 10)
predict(fit, n.ahead = 10, mse="uncond")
## predict with plotting: critical values = +/- 2
predict(fit, n.ahead = 10, plot=TRUE, crit_val = 2)
## include also VaR and ES at 5%
predict(fit, n.ahead = 10, plot=TRUE, crit_val = 2, p_loss = 0.05)
## predict with plotting: automatic critical values
## for different conditional distributions
set.seed(321)
fit2 = garchFit(~ garch(1, 1), data = garchSim(), trace=FALSE, cond.dist="sged")
## 95% confidence level
predict(fit2, n.ahead=20, plot=TRUE)
set.seed(444)
fit3 = garchFit(~ garch(1, 1), data = garchSim(), trace=FALSE, cond.dist="QMLE")
## 90% confidence level and nx=100
predict(fit3, n.ahead=20, plot=TRUE, conf=.9, nx=100)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.