Description Usage Arguments Value References Examples
design_pAMCE
implements the design-based approach to estimate the pAMCE. See de la Cuesta, Egami, and Imai (2019+) for details. More examples are available at the GitHub page of factorEx
.
1 2 3 4 5 6 7 8 9 10 11 12 |
formula |
Formula |
factor_name |
Factors for which the function estimates the pAMCEs. If not specified, the function estimates for all factors. |
data |
Data |
pair |
Whether we use a paired-choice conjoint design. |
pair_id |
Unique identifiers for pairs in the paired-choice conjoint design (optional). |
cross_int |
Include interactions across profiles. Default is FALSE. |
cluster_id |
Unique identifiers for computing cluster standard errors (optional). |
target_dist |
Target profile distributions to be used. See Examples in the GitHub page for details. |
target_type |
Types of target profile distributions. ‘marginal', ’partial_joint', or 'target_data'. |
partial_joint_name |
(when 'target_type = "partial_joint"') Names of factors representing partial joint distributions. See Examples in the GitHub page for details. |
design_pAMCE
returns an object of pAMCE
class.
AMCE
: Estimates of the pAMCE for all factors.
design_weight
: Weight for each observation used in the weighted difference-in-means.
approach
: "design_based"
input
: Input into the function.
...
: Values for internal use.
de la Cuesta, Egami, and Imai. (2019+). Improving the External Validity of Conjoint Analysis: The Essential Role of Profile Distribution. (Working Paper). Available at https://scholar.princeton.edu/sites/default/files/negami/files/conjoint_profile.pdf.
Egami and Imai. (2019). Causal Interaction in Factorial Experiments: Application to Conjoint Analysis. Journal of the American Statistical Association, Vol.114, No.526 (June), pp. 529–540. Available at https://scholar.princeton.edu/sites/default/files/negami/files/causalint.pdf.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | # Small example
data("OnoBurden")
OnoBurden_data_pr_s <- OnoBurden$OnoBurden_data_pr[1:500, ]
# randomization based on marginal population design
target_dist_marginal_s <- OnoBurden$target_dist_marginal[c("gender", "age")]
# design-based estimation
out_design_mar_s <-
design_pAMCE(formula = Y ~ gender + age,
factor_name = "gender",
data = OnoBurden_data_pr_s,
pair_id = OnoBurden_data_pr_s$pair_id,
cluster_id = OnoBurden_data_pr_s$id,
target_dist = target_dist_marginal_s, target_type = "marginal")
summary(out_design_mar_s)
# Example
data("OnoBurden")
OnoBurden_data_pr <- OnoBurden$OnoBurden_data_pr
# randomization based on marginal population design
target_dist_marginal <- OnoBurden$target_dist_marginal
# design-based estimation
out_design_mar <-
design_pAMCE(formula = Y ~ gender + age + family + race + experience + party + pos_security,
factor_name = c("gender", "age", "experience"),
data = OnoBurden_data_pr,
pair_id = OnoBurden_data_pr$pair_id,
cluster_id = OnoBurden_data_pr$id,
target_dist = target_dist_marginal, target_type = "marginal")
summary(out_design_mar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.