print_fairness_pca: Print fairness PCA

print.fairness_pcaR Documentation

Print fairness PCA

Description

Print principal components after using pca on fairness object

Usage

## S3 method for class 'fairness_pca'
print(x, ...)

Arguments

x

fairness_pca object

...

other print parameters

Examples


data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
  data = german,
  family = binomial(link = "logit")
)

rf_model <- ranger::ranger(Risk ~ .,
  data = german,
  probability = TRUE,
  num.trees = 200,
  num.threads = 1
)

explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm, explainer_rf,
  protected = german$Sex,
  privileged = "male"
)

# same explainers with different cutoffs for female
fobject <- fairness_check(explainer_lm, explainer_rf, fobject,
  protected = german$Sex,
  privileged = "male",
  cutoff = list(female = 0.4),
  label = c("lm_2", "rf_2")
)

fpca <- fairness_pca(fobject)

print(fpca)

fairmodels documentation built on Aug. 24, 2022, 1:05 a.m.