print.stacked_metrics | R Documentation |
Stack metrics sums parity loss metrics for all models. Higher value of stacked metrics means the model is less fair (has higher bias) for subgroups from protected vector.
## S3 method for class 'stacked_metrics' print(x, ...)
x |
|
... |
other print parameters |
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) sm <- stack_metrics(fobject) print(sm)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.