extract_feature_similarity: Internal function to extract the feature distance table.

extract_feature_similarityR Documentation

Internal function to extract the feature distance table.

Description

Computes and extracts the feature distance table for features used in a familiarEnsemble object. This table can be used to cluster features, and is exported directly by export_feature_similarity.

Usage

extract_feature_similarity(
  object,
  data,
  cl = NULL,
  estimation_type = waiver(),
  aggregate_results = waiver(),
  confidence_level = waiver(),
  bootstrap_ci_method = waiver(),
  is_pre_processed = FALSE,
  feature_cluster_method = waiver(),
  feature_linkage_method = waiver(),
  feature_cluster_cut_method = waiver(),
  feature_similarity_threshold = waiver(),
  feature_similarity_metric = waiver(),
  verbose = FALSE,
  message_indent = 0L,
  ...
)

Arguments

object

A familiarEnsemble object, which is an ensemble of one or more familiarModel objects.

data

A dataObject object, data.table or data.frame that constitutes the data that are assessed.

cl

Cluster created using the parallel package. This cluster is then used to speed up computation through parallellisation.

estimation_type

(optional) Sets the type of estimation that should be possible. This has the following options:

  • point: Point estimates.

  • bias_correction or bc: Bias-corrected estimates. A bias-corrected estimate is computed from (at least) 20 point estimates, and familiar may bootstrap the data to create them.

  • bootstrap_confidence_interval or bci (default): Bias-corrected estimates with bootstrap confidence intervals (Efron and Hastie, 2016). The number of point estimates required depends on the confidence_level parameter, and familiar may bootstrap the data to create them.

As with detail_level, a non-default estimation_type parameter can be specified for separate evaluation steps by providing a parameter value in a named list with data elements, e.g. list("auc_data"="bci", "model_performance"="point"). This parameter can be set for the following data elements: auc_data, decision_curve_analyis, model_performance, permutation_vimp, ice_data, and prediction_data.

aggregate_results

(optional) Flag that signifies whether results should be aggregated during evaluation. If estimation_type is bias_correction or bc, aggregation leads to a single bias-corrected estimate. If estimation_type is bootstrap_confidence_interval or bci, aggregation leads to a single bias-corrected estimate with lower and upper boundaries of the confidence interval. This has no effect if estimation_type is point.

The default value is equal to TRUE except when assessing metrics to assess model performance, as the default violin plot requires underlying data.

As with detail_level and estimation_type, a non-default aggregate_results parameter can be specified for separate evaluation steps by providing a parameter value in a named list with data elements, e.g. list("auc_data"=TRUE, , "model_performance"=FALSE). This parameter exists for the same elements as estimation_type.

confidence_level

(optional) Numeric value for the level at which confidence intervals are determined. In the case bootstraps are used to determine the confidence intervals bootstrap estimation, familiar uses the rule of thumb n = 20 / ci.level to determine the number of required bootstraps.

The default value is 0.95.

bootstrap_ci_method

(optional) Method used to determine bootstrap confidence intervals (Efron and Hastie, 2016). The following methods are implemented:

  • percentile (default): Confidence intervals obtained using the percentile method.

  • bc: Bias-corrected confidence intervals.

Note that the standard method is not implemented because this method is often not suitable due to non-normal distributions. The bias-corrected and accelerated (BCa) method is not implemented yet.

is_pre_processed

Flag that indicates whether the data was already pre-processed externally, e.g. normalised and clustered. Only used if the data argument is a data.table or data.frame.

feature_cluster_method

The method used to perform clustering. These are the same methods as for the cluster_method configuration parameter: none, hclust, agnes, diana and pam.

none cannot be used when extracting data regarding mutual correlation or feature expressions.

If not provided explicitly, this parameter is read from settings used at creation of the underlying familiarModel objects.

feature_linkage_method

The method used for agglomerative clustering in hclust and agnes. These are the same methods as for the cluster_linkage_method configuration parameter: average, single, complete, weighted, and ward.

If not provided explicitly, this parameter is read from settings used at creation of the underlying familiarModel objects.

feature_cluster_cut_method

The method used to divide features into separate clusters. The available methods are the same as for the cluster_cut_method configuration parameter: silhouette, fixed_cut and dynamic_cut.

silhouette is available for all cluster methods, but fixed_cut only applies to methods that create hierarchical trees (hclust, agnes and diana). dynamic_cut requires the dynamicTreeCut package and can only be used with agnes and hclust.

If not provided explicitly, this parameter is read from settings used at creation of the underlying familiarModel objects.

feature_similarity_threshold

The threshold level for pair-wise similarity that is required to form feature clusters with the fixed_cut method.

If not provided explicitly, this parameter is read from settings used at creation of the underlying familiarModel objects.

feature_similarity_metric

Metric to determine pairwise similarity between features. Similarity is computed in the same manner as for clustering, and feature_similarity_metric therefore has the same options as cluster_similarity_metric: mcfadden_r2, cox_snell_r2, nagelkerke_r2, spearman, kendall and pearson.

If not provided explicitly, this parameter is read from settings used at creation of the underlying familiarModel objects.

verbose

Flag to indicate whether feedback should be provided on the computation and extraction of various data elements.

message_indent

Number of indentation steps for messages shown during computation and extraction of various data elements.

...

Unused arguments.

Value

A data.table containing pairwise distance between features. This data is only the upper triangular of the complete matrix (i.e. the sparse unitriangular representation). Diagonals will always be 0.0 and the lower triangular is mirrored.


familiar documentation built on Sept. 30, 2024, 9:18 a.m.