summon_familiar | R Documentation |
Perform end-to-end machine learning and data analysis
summon_familiar(
formula = NULL,
data = NULL,
experiment_data = NULL,
cl = NULL,
config = NULL,
config_id = 1L,
verbose = TRUE,
.stop_after = "evaluation",
...
)
formula |
An R formula. The formula can only contain feature names and
dot ( Use of the formula interface is optional. |
data |
A
All data is expected to be in wide format, and ideally has a sample
identifier (see In case paths are provided, the data should be stored as |
experiment_data |
Experimental data may provided in the form of |
cl |
Cluster created using the This parameter has no effect if the |
config |
List containing configuration parameters, or path to an All parameters can also be set programmatically. These supersede any arguments derived from the configuration list. |
config_id |
Identifier for the configuration in case the list or |
verbose |
Indicates verbosity of the results. Default is TRUE, and all messages and warnings are returned. |
.stop_after |
Variable for internal use. |
... |
Arguments passed on to
|
Nothing. All output is written to the experiment directory. If the experiment directory is in a temporary location, a list with all familiarModel, familiarEnsemble, familiarData and familiarCollection objects will be returned.
Storey, J. D. A direct approach to false discovery rates. J. R. Stat. Soc. Series B Stat. Methodol. 64, 479–498 (2002).
Shrout, P. E. & Fleiss, J. L. Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86, 420–428 (1979).
Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163 (2016).
Yeo, I. & Johnson, R. A. A new family of power transformations to improve normality or symmetry. Biometrika 87, 954–959 (2000).
Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. Series B Stat. Methodol. 26, 211–252 (1964).
Raymaekers, J., Rousseeuw, P. J. Transforming variables to central normality. Mach Learn. (2021).
Park, M. Y., Hastie, T. & Tibshirani, R. Averaged gene expressions for regression. Biostatistics 8, 212–227 (2007).
Tolosi, L. & Lengauer, T. Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics 27, 1986–1994 (2011).
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007)
Kaufman, L. & Rousseeuw, P. J. Finding groups in data: an introduction to cluster analysis. (John Wiley & Sons, 2009).
Muellner, D. fastcluster: fast hierarchical, agglomerative clustering routines for R and Python. J. Stat. Softw. 53, 1–18 (2013).
Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).
Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008).
McFadden, D. Conditional logit analysis of qualitative choice behavior. in Frontiers in Econometrics (ed. Zarembka, P.) 105–142 (Academic Press, 1974).
Cox, D. R. & Snell, E. J. Analysis of binary data. (Chapman and Hall, 1989).
Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).
Meinshausen, N. & Buehlmann, P. Stability selection. J. R. Stat. Soc. Series B Stat. Methodol. 72, 417–473 (2010).
Haury, A.-C., Gestraud, P. & Vert, J.-P. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One 6, e28210 (2011).
Wald, R., Khoshgoftaar, T. M., Dittman, D., Awada, W. & Napolitano,A. An extensive comparison of feature ranking aggregation techniques in bioinformatics. in 2012 IEEE 13th International Conference on Information Reuse Integration (IRI) 377–384 (2012).
Hutter, F., Hoos, H. H. & Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. in Learning and Intelligent Optimization (ed. Coello, C. A. C.) 6683, 507–523 (Springer Berlin Heidelberg, 2011).
Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 104, 148–175 (2016)
Srinivas, N., Krause, A., Kakade, S. M. & Seeger, M. W. Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting. IEEE Trans. Inf. Theory 58, 3250–3265 (2012)
Kaufmann, E., Cappé, O. & Garivier, A. On Bayesian upper confidence bounds for bandit problems. in Artificial intelligence and statistics 592–600 (2012).
Jamieson, K. & Talwalkar, A. Non-stochastic Best Arm Identification and Hyperparameter Optimization. in Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (eds. Gretton, A. & Robert, C. C.) vol. 51 240–248 (PMLR, 2016).
Gramacy, R. B. laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian Processes in R. Journal of Statistical Software 72, 1–46 (2016)
Sparapani, R., Spanbauer, C. & McCulloch, R. Nonparametric Machine Learning and Efficient Computation with Bayesian Additive Regression Trees: The BART R Package. Journal of Statistical Software 97, 1–66 (2021)
Davison, A. C. & Hinkley, D. V. Bootstrap methods and their application. (Cambridge University Press, 1997).
Efron, B. & Hastie, T. Computer Age Statistical Inference. (Cambridge University Press, 2016).
Lausen, B. & Schumacher, M. Maximally Selected Rank Statistics. Biometrics 48, 73 (1992).
Hothorn, T. & Lausen, B. On the exact distribution of maximally selected rank statistics. Comput. Stat. Data Anal. 43, 121–137 (2003).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.