fastRG: Sample Generalized Random Dot Product Graphs in Linear Time

Samples generalized random product graph, a generalization of a broad class of network models. Given matrices X, S, and Y with with non-negative entries, samples a matrix with expectation X S Y^T and independent Poisson or Bernoulli entries. The algorithm first samples the number of edges and then puts them down one-by-one. As a result it is O(m) where m is the number of edges, a dramatic improvement over element-wise algorithms that which require O(n^2) operations to sample a random graph, where n is the number of nodes.

Getting started

Package details

AuthorAlex Hayes [aut, cre, cph] (<https://orcid.org/0000-0002-4985-5160>), Karl Rohe [aut, cph], Jun Tao [aut], Xintian Han [aut], Norbert Binkiewicz [aut]
MaintainerAlex Hayes <alexpghayes@gmail.com>
LicenseMIT + file LICENSE
Version0.3.0
URL https://github.com/RoheLab/fastRG
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("fastRG")

Try the fastRG package in your browser

Any scripts or data that you put into this service are public.

fastRG documentation built on Feb. 26, 2021, 5:10 p.m.