fastcmh: Significant Interval Discovery with Categorical Covariates

A method which uses the Cochran-Mantel-Haenszel test with significant pattern mining to detect intervals in binary genotype data which are significantly associated with a particular phenotype, while accounting for categorical covariates.

Install the latest version of this package by entering the following in R:
install.packages("fastcmh")
AuthorFelipe Llinares Lopez, Dean Bodenham
Date of publication2016-09-13 21:19:17
MaintainerDean Bodenham <deanbodenhambsse@gmail.com>
LicenseGPL-2 | GPL-3
Version0.2.7

View on CRAN

Files

inst
inst/extdata
inst/extdata/truetau.txt
inst/extdata/data2.txt
inst/extdata/label.txt
inst/extdata/data.txt
inst/extdata/unfilteredtest2.csv
inst/extdata/cov.txt
tests
tests/testthat.R
tests/testthat
tests/testthat/test1_filtering.R tests/testthat/test3_fastcmh.R tests/testthat/test2_morefiltering.R
src
src/rcppdatawrap.h
src/fastcmh_cpp.h
src/fdr.cpp
src/rcppdatawrap.cpp
src/filterIntervals.h
src/filterIntervals.cpp
src/fdr.h
src/RcppExports.cpp
src/fastcmh_cpp.cpp
NAMESPACE
R
R/fastcmh.R R/RcppExports.R R/demofastcmh.R R/makefastcmhdata.R
MD5
DESCRIPTION
man
man/makefastcmhdata.Rd man/runfastcmh.Rd man/demofastcmh.Rd

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.