array.mult: Array multiplication

Description Usage Arguments Details Value References See Also Examples

View source: R/array.R

Description

Multiplication of 3-dimensional arrays was first introduced by Bates and Watts (1980). More extensions and technical details can be found in Wei (1998).

Usage

1
array.mult(a, b, x)

Arguments

a

a numeric matrix.

b

a numeric matrix.

x

a three-dimensional array.

Details

Let \bold{X} = (x_{tij}) be a 3-dimensional n\times p\times q where indices t, i and j indicate face, row and column, respectively. The product \bold{Y} = \bold{AXB} is an n\times r\times s array, with \bold{A} and \bold{B} are r\times p and q\times s matrices respectively. The elements of \bold{Y} are defined as:

y_{tkl} = āˆ‘\limits_{i=1}^pāˆ‘\limits_{j=1}^q a_{ki}x_{tij}b_{jl}

Value

array.mult returns a 3-dimensional array of dimension n\times r\times s.

References

Bates, D.M., Watts, D.G. (1980). Relative curvature measures of nonlinearity. Journal of the Royal Statistical Society, Series B 42, 1-25.

Wei, B.C. (1998). Exponential Family Nonlinear Models. Springer, New York.

See Also

array, matrix, bracket.prod.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
x <- array(0, dim = c(2,3,3)) # 2 x 3 x 3 array
x[,,1] <- c(1,2,2,4,3,6)
x[,,2] <- c(2,4,4,8,6,12)
x[,,3] <- c(3,6,6,12,9,18)

a <- matrix(1, nrow = 2, ncol = 3)
b <- matrix(1, nrow = 3, ncol = 2)

y <- array.mult(a, b, x) # a 2 x 2 x 2 array
y

fastmatrix documentation built on Oct. 18, 2021, 5:08 p.m.