norm2nbinom | R Documentation |
See the help for 'qnbinom()' for further info about prob versus mu parameter specification. Thanks for the suggested code, David Hugh-Jones!
norm2nbinom(
x,
size,
prob,
mu,
lower.tail = TRUE,
log.p = FALSE,
x_mu = mean(x),
x_sd = stats::sd(x)
)
x |
the normally distributed vector |
size |
target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). (size > 0) |
prob |
the probability of success on each trial (0 to 1) |
mu |
alternative parametrization via mean (only specify one of prob or mu) |
lower.tail |
logical; if TRUE (default), probabilities are P[$X <= x$], otherwise, P[$X > x$] |
log.p |
logical; if TRUE, probabilities p are given as log(p) |
x_mu |
the mean of x (calculated from x if not given) |
x_sd |
the SD of x (calculated from x if not given) |
a vector with a negative binomial distribution
x <- rnorm(10000)
y <- norm2nbinom(x, 1, prob = 0.5)
z <- norm2nbinom(x, 1, mu = 1)
g <- ggplot2::ggplot() + ggplot2::geom_point(ggplot2::aes(x, y))
ggExtra::ggMarginal(g, type = "histogram")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.