Nothing
print.flm <- function(x, ...){
hr <- round(x$time %/% 3600)
min <- round((x$time %% 3600) %/% 60)
sec <- round((x$time %% 3600) %% 60)
hr <- ifelse(hr < 10, paste("0", hr, sep = ""), hr)
min <- ifelse(min < 10, paste("0", min, sep = ""), min)
sec <- ifelse(sec < 10, paste("0", sec, sep = ""), sec)
cat("The number of profile factors is: ", x$npf, "\n", sep = "")
cat("\n")
cat("The number of runs is: ", x$nruns, "\n", sep = "")
cat("\n")
cat("The objective criterion is: ", x$criterion, "-optimality", "\n", sep = "")
cat("\n")
cat("The objective value is: ", x$objval, "\n", sep = "")
cat("\n")
cat("The number of iterations is: ", x$nits, "\n", sep = "")
cat("\n")
cat("The computing elapsed time is: ", paste(hr, ":", min, ":", sec, sep = ""), "\n", sep = "")
}
summary.flm <- function(object, ...){
hr <- round(object$time %/% 3600)
min <- round((object$time %% 3600) %/% 60)
sec <- round((object$time %% 3600) %% 60)
hr <- ifelse(hr < 10, paste("0", hr, sep = ""), hr)
min <- ifelse(min < 10, paste("0", min, sep = ""), min)
sec <- ifelse(sec < 10, paste("0", sec, sep = ""), sec)
cat("The number of profile factors is: ", object$npf, "\n", sep = "")
cat("\n")
cat("The number of runs is: ", object$nruns, "\n", sep = "")
cat("\n")
cat("The objective criterion is: ", object$criterion, "-optimality", "\n", sep = "")
cat("\n")
cat("The objective value is: ", object$objval, "\n", sep = "")
cat("\n")
cat("The number of iterations is: ", object$nits, "\n", sep = "")
cat("\n")
cat("The computing elapsed time is: ", paste(hr, ":", min, ":", sec, sep = ""), "\n", sep = "")
}
plot.flm <- function(x, ...){
npf <- x$npf
xpf <- readline("Which profile factor to plot?")
xpf <- as.numeric(unlist(strsplit(xpf, ",")))
if(xpf > npf | xpf < 1) stop("The profile factor choice must be a value
between 1 and the total number of profile factors npf")
des <- x$design[[xpf]]
dxpf <- x$dx[xpf]
if (identical(dxpf, as.integer(0))) {
pltype <- "s"
}
knotsxpf <- x$knotsx[[xpf]]
t <- x$tbounds
seqt <- seq(t[1], t[2], length.out = 100)
xt <- mybs(seqt, degree=dxpf, interior.knots=knotsxpf, intercept=TRUE) %*% t(des)
yl <- x$dbounds
yldiff <- yl[2] - yl[1]
seqyl <- seq(yl[1], yl[2], length.out = yldiff + 1)
n <- x$nruns
for (i in 1:n) {
if (i==1) mymain <- paste0(i,"st run")
if (i==2) mymain <- paste0(i,"nd run")
if (i==3) mymain <- paste0(i,"rd run")
if (i > 3) mymain <- paste0(i,"th run")
if (dxpf == 0) {
stepy <- des[i,]
stepx <- stepfun(knotsxpf, stepy, f = 0)
plot(stepx, xlab = "time", ylab = "x(t)", main = mymain, xlim = t,
ylim = yl, yaxt = "n", las = 1)
axis(2, at = seqyl, las = 1)
} else {
plot(seqt, xt[,i], xlab = "time", ylab = "x(t)", main = mymain, xlim = t,
ylim = yl, type = "l", yaxt = "n", las = 1)
axis(2, at = seqyl, las = 1)
}
}
}
print.fglm <- function(x, ...){
hr <- round(x$time %/% 3600)
min <- round((x$time %% 3600) %/% 60)
sec <- round((x$time %% 3600) %% 60)
hr <- ifelse(hr < 10, paste("0", hr, sep = ""), hr)
min <- ifelse(min < 10, paste("0", min, sep = ""), min)
sec <- ifelse(sec < 10, paste("0", sec, sep = ""), sec)
cat("The number of profile factors is: ", x$npf, "\n", sep = "")
cat("\n")
cat("The number of runs is: ", x$nruns, "\n", sep = "")
cat("\n")
cat("The objective criterion is: ", x$criterion, "-optimality", "\n", sep = "")
cat("\n")
cat("The objective value is: ", x$objval, "\n", sep = "")
cat("\n")
cat("The number of iterations is: ", x$nits, "\n", sep = "")
cat("\n")
cat("The method of approximation is: ", x$method, "\n", sep = "")
cat("\n")
cat("The family distribution and the link function are: ", x$family[1], " and ", x$family[2], "\n", sep = "")
cat("\n")
cat("The computing elapsed time is: ", paste(hr, ":", min, ":", sec, sep = ""), "\n", sep = "")
}
summary.fglm <- function(object, ...){
hr <- round(object$time %/% 3600)
min <- round((object$time %% 3600) %/% 60)
sec <- round((object$time %% 3600) %% 60)
hr <- ifelse(hr < 10, paste("0", hr, sep = ""), hr)
min <- ifelse(min < 10, paste("0", min, sep = ""), min)
sec <- ifelse(sec < 10, paste("0", sec, sep = ""), sec)
cat("The number of profile factors is: ", object$npf, "\n", sep = "")
cat("\n")
cat("The number of runs is: ", object$nruns, "\n", sep = "")
cat("\n")
cat("The objective criterion is: ", object$criterion, "-optimality", "\n", sep = "")
cat("\n")
cat("The objective value is: ", object$objval, "\n", sep = "")
cat("\n")
cat("The number of iterations is: ", object$nits, "\n", sep = "")
cat("\n")
cat("The method of approximation is: ", object$method, "\n", sep = "")
cat("\n")
cat("The family distribution and the link function are: ", object$family[1], " and ", object$family[2], "\n", sep = "")
cat("\n")
cat("The computing elapsed time is: ", paste(hr, ":", min, ":", sec, sep = ""), "\n", sep = "")
}
plot.fglm <- function(x, ...){
npf <- x$npf
xpf <- readline("Which profile factor to plot?")
xpf <- as.numeric(unlist(strsplit(xpf, ",")))
if(xpf > npf | xpf < 1) stop("The profile factor choice must be a value
between 1 and the total number of profile factors npf")
des <- x$design[[xpf]]
dxpf <- x$dx[xpf]
if (identical(dxpf, as.integer(0))) {
pltype <- "s"
}
knotsxpf <- x$knotsx[[xpf]]
t <- x$tbounds
seqt <- seq(t[1], t[2], length.out = 100)
xt <- mybs(seqt, degree=dxpf, interior.knots=knotsxpf, intercept=TRUE) %*% t(des)
yl <- x$dbounds
yldiff <- yl[2] - yl[1]
seqyl <- seq(yl[1], yl[2], length.out = yldiff + 1)
n <- x$nruns
for (i in 1:n) {
if (i==1) mymain <- paste0(i,"st run")
if (i==2) mymain <- paste0(i,"nd run")
if (i==3) mymain <- paste0(i,"rd run")
if (i > 3) mymain <- paste0(i,"th run")
if (dxpf == 0) {
stepy <- des[i,]
stepx <- stepfun(knotsxpf, stepy, f = 0)
plot(stepx, xlab = "time", ylab = "x(t)", main = mymain, xlim = t,
ylim = yl, yaxt = "n", las = 1)
axis(2, at = seqyl, las = 1)
} else {
plot(seqt, xt[,i], xlab = "time", ylab = "x(t)", main = mymain, xlim = t,
ylim = yl, type = "l", yaxt = "n", las = 1)
axis(2, at = seqyl, las = 1)
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.