SVR | R Documentation |
This function builds a regression model using Support Vector Machine.
SVR(
x,
y,
gamma = 2^(-3:3),
cost = 2^(-3:3),
kernel = c("radial", "linear"),
epsilon = c(0.1, 0.5, 1),
params = NULL,
tune = FALSE,
...
)
x |
Predictor |
y |
Response |
gamma |
The gamma parameter (if a vector, cross-over validation is used to chose the best size). |
cost |
The cost parameter (if a vector, cross-over validation is used to chose the best size). |
kernel |
The kernel type. |
epsilon |
The epsilon parameter (if a vector, cross-over validation is used to chose the best size). |
params |
Object containing the parameters. If given, it replaces |
tune |
If true, the function returns paramters instead of a classification model. |
... |
Other arguments. |
The classification model.
svm
, SVRl
, SVRr
## Not run:
require (datasets)
data (trees)
SVR (trees [, -3], trees [, 3], kernel = "linear", cost = 1)
SVR (trees [, -3], trees [, 3], kernel = "radial", gamma = 1, cost = 1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.