SVRl | R Documentation |
This function builds a regression model using Support Vector Machine with a linear kernel.
SVRl(
x,
y,
cost = 2^(-3:3),
epsilon = c(0.1, 0.5, 1),
params = NULL,
tune = FALSE,
...
)
x |
Predictor |
y |
Response |
cost |
The cost parameter (if a vector, cross-over validation is used to chose the best size). |
epsilon |
The epsilon parameter (if a vector, cross-over validation is used to chose the best size). |
params |
Object containing the parameters. If given, it replaces |
tune |
If true, the function returns paramters instead of a classification model. |
... |
Other arguments. |
The classification model.
svm
, SVR
## Not run:
require (datasets)
data (trees)
SVRl (trees [, -3], trees [, 3], cost = 1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.