intern | R Documentation |
Evaluation a clustering algorithm according to internal criteria.
intern(clus, d, eval = "intraclass", type = c("global", "cluster"))
clus |
The extracted clusters. |
d |
The dataset. |
eval |
The evaluation criteria. |
type |
Indicates whether a "global" or a "cluster"-wise evaluation should be used. |
The evaluation of the clustering.
compare
, stability
, intern.dunn
, intern.interclass
, intern.intraclass
require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
intern (km$clus, iris [, -5])
intern (km$clus, iris [, -5], type = "cluster")
intern (km$clus, iris [, -5], eval = c ("intraclass", "interclass"))
intern (km$clus, iris [, -5], eval = c ("intraclass", "interclass"), type = "cluster")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.