intern.interclass | R Documentation |
Evaluation a clustering algorithm according to interclass inertia.
intern.interclass(clus, d, type = c("global", "cluster"))
clus |
The extracted clusters. |
d |
The dataset. |
type |
Indicates whether a "global" or a "cluster"-wise evaluation should be used. |
The evaluation of the clustering.
intern
, intern.dunn
, intern.intraclass
require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
intern.interclass (km$clus, iris [, -5])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.