grotagplus | R Documentation |
This is an extension of fishmethods function grotag to allow a wider variety of growth models and also the simultaneous analysis of multiple tagging datasets with parameter sharing between datasets (see Details).
As in grotag, the data are fitted using a constrained maximum likelihood optimization performed by optim using the "L-BFGS-B" method. Estimated parameters can include galpha, gbeta (mean annual growth at reference lengths alpha and beta); b (a curvature parameter for the Schnute models); Lstar (a transitional length for the asymptotic model); m, s (mean and s.d. of the measurement error for length increment); nu, t (growth variability); p (outlier probability); u, w (magnitude and phase of seasonal growth).
grotagplus(tagdata, dataID=NULL,alpha, beta = NULL,
model=list(mean="Francis",var="linear",seas="sinusoid"),
design, stvalue, upper, lower,fixvalue=NULL,
traj.Linit=c(alpha,beta),control = list(maxit = 10000), debug = FALSE)
tagdata |
Dataframe with components L1, L2 (lengths at release
and recovery of tagged fish), T1, T2 (julian times (y) at
release and recovery), and (optionally), a numeric or character
vector (named by argument |
dataID |
Name of optional component of tagdata identifying separate
datasets within tagdata. The default |
alpha |
Numeric value giving an arbitrary length alpha. |
beta |
Numeric value giving an arbitrary length beta
(must have |
model |
List with components mean, var, seas, specifying which model equations to use for the mean (or expected) growth, individual variability in growth, and seasonal variation in growth (see Details for valid values). The default is that of model 4 in Francis (1988). |
design |
List specifying the design of the estimation: which
parameters are estimated, and whether multiple values are estimated.
There should be one component for each parameter of the model
specified by |
stvalue |
List containing starting values of estimated parameters,
used as input in the nonlinear estimation
(function optim) routine. There should be one component
for each estimated parameter (except, optionally, galpha and gbeta).
Each component should be either a single number or a vector whose
length is the number of separate values of that parameter
(as specified in |
lower |
Lists containing lower limits for each parameter,
with structure as for |
upper |
Lists containing upper limits for each parameter,
with structure as for |
fixvalue |
Optional list containing fixed values for parameters that
are needed (according to |
traj.Linit |
Vector of initial length(s) for output growth trajectories. Default is c(alpha,beta). |
control |
Additional controls passed to the optimization function optim. |
debug |
output debugging information. |
Valid values of model$mean are
"Francis"
as in Francis (1988).
"Schnute"
as in Francis (1995).
"Schnute.aeq0"
special case of Schnute - see equns (5.3), (5.4)
of Francis (1995).
"asymptotic"
as in Cranfield et al. (1996).
Valid values of model$var are
"linear"
as used in the example in Francis(1988) - see equn
(5).
"capped"
as in equn (6) of Francis(1988).
"exponential"
as in equn (7) of Francis(1988).
"asymptotic"
as in equn (8) of Francis(1988).
"least-squares"
ignore individual variability and fit data by
least-squares, as in Model 1 of Francis(1988).
Valid values of model$seas are
"sinusoid"
as in model 4 of Francis(1988).
"switched"
as in Francis & Winstanley (1989).
"none"
as in all but model 4 of Francis(1988).
The option of multiple data sets with parameter sharing is intended to allow for the situation where we wish to estimate different mean growth for two or more datasets but can reasonably assume that other parameters (e.g., for growth variability, measurement error, outlier contamination) are the same for all datasets. This should produces stronger estimates of these other parameters. For example, Francis & Francis (1992) allow growth to differ by sex, and in Francis & Winstanley (1989) it differs by stock and/or habitat.
grotagplus
may fail if parameter starting values are too distant from
their true value, or if parameter bounds are too wide. Try changing
these values. Sometimes reasonable starting values can be found by
fitting the model with other parameters fixed at plausible values.
parest |
Parameter estimates and their s.e.s. |
parfix |
Parameter values, if any, fixed by user. |
correlations |
Correlations between parameter estimates. When
there are multiple estimates of a parameter these are numbered
by their ordering in argument |
stats |
Negative log-likelihood and AIC statistic. |
model |
The three components of the grotagplus argument model. |
datasetnames |
The dataset names, if there are multiple datasets. |
pred |
Dataframe of various predicted quantities need for residual plots - one row per data record. |
Linf.k |
Values of parameters Linf and k as calculated between
equations (1) and (2) of Francis (1988) (but not possible for the
Schnute model). These are provided for computational convenience
only; they are not comparable with Linf and k estimated from
age-length data. Comparisons of growth estimates from tagging
and age-length data are better done using output |
meananngrowth |
Data for plot of mean annual growth vs length, as in Fig. 8 of Francis and Francis (1992). |
traj |
Data for plots of growth trajectories like Fig. 2 of Francis (1988). |
Chris Francis chrisfrancis341@gmail.com
Marco Kienzle Marco.Kienzle@gmail.com
Gary A. Nelson, Massachusetts Division of Marine Fisheries gary.nelson@mass.gov
1
Francis, R.I.C.C., 1988. Maximum likelihood estimation of
growth and growth variability from tagging data.
New Zealand Journal of Marine and Freshwater Research, 22, p.42-51.
2
Cranfield, H.J., Michael, K.P., and Francis, R.I.C.C. 1996.
Growth rates of five species of subtidal clam on a beach in the South
Island, New Zealand. Marine and Freshwater Research 47: 773-784.
3
Francis, R.I.C.C. 1995. An alternative mark-recapture analogue
of Schnute"s growth model. Fisheries Research 23: 95-111.
4
Francis, R.I.C.C. and Winstanley, R.H. 1989. Differences in
growth rates between habitats of southeast Australian snapper
(Chrysophrys auratus). Australian Journal of Marine & Freshwater
Research 40: 703-710.
5
Francis, M.P. and Francis, R.I.C.C. 1992. Growth rate
estimates for New Zealand rig (Mustelus lenticulatus). Australian
Journal of Marine and Freshwater Research 43: 1157-1176.
plot.grotagplus
print.grotagplus
#Model 4 of Francis (1988)
data(bonito)
grotagplus(bonito,alpha=35,beta=55,
design=list(galpha=1,gbeta=1,s=1,nu=1,m=1,p=1,u=1,w=1),
stvalue=list(s=0.81,nu=0.3,m=0,p=0.01,u=0.5,w=0.5),
upper=list(s=3,nu=1,m=2,p=0.1,u=1,w=1),
lower=list(s=0.1,nu=0.1,m=-2,p=0,u=0,w=0))
#Model 1 of Francis (1988), using least-squares fit
grotagplus(bonito,alpha=35,beta=55,
model=list(mean="Francis",var="least-squares",seas="none"),
design=list(galpha=1,gbeta=1,s=1,p=0),
stvalue=list(s=1.8),upper=list(s=3),lower=list(s=1))
#Paphies donacina model in Table 4 of Cranfield et al (1996) with
#asymptotic model
data(P.donacina)
grotagplus(P.donacina,alpha=50,beta=80,
model=list(mean="asymptotic",var="linear",seas="none"),
design=list(galpha=1,gbeta=1,Lstar=0,s=1,nu=0,m=0,p=0),
stvalue=list(galpha=10,gbeta=1.5,s=2),
upper=list(galpha=15,gbeta=2.7,s=4),
lower=list(galpha=7,gbeta=0.2,s=0.5),
fixvalue=list(Lstar=80))
#Paphies donacina model in Table 4 of Cranfield et al (1996) with
#asymptotic model
data(P.donacina)
grotagplus(P.donacina,alpha=50,beta=80,
model=list(mean="asymptotic",var="linear",seas="none"),
design=list(galpha=1,gbeta=1,Lstar=0,s=1,nu=0,m=0,p=0),
stvalue=list(galpha=10,gbeta=1.5,s=2),
upper=list(galpha=15,gbeta=2.7,s=4),
lower=list(galpha=7,gbeta=0.2,s=0.5),
fixvalue=list(Lstar=80))
# Model 4 fit from Francis and Francis (1992) with different growth by sex
data(rig)
grotagplus(rig,dataID="Sex",alpha=70,beta=100,
model=list(mean="Francis",var="linear",seas="none"),
design=list(galpha=list("F","M"),gbeta=list("F","M"),s=1,nu=1,m=0,p=0),
stvalue=list(galpha=c(5,4),gbeta=c(3,2),s=2,nu=0.5),
upper=list(galpha=c(8,6),gbeta=c(5,4),s=4,nu=1),
lower=list(galpha=c(3,2),gbeta=c(1.5,1),s=0.5,nu=0.2))
#Example where all parameters are fixed
# to the values estimated values for model 4 of Francis and Francis (1992)]
grotagplus(rig,dataID="Sex",alpha=70,beta=100,
model=list(mean="Francis",var="linear",seas="none"),
design=list(galpha=0,gbeta=0,s=0,nu=0,m=0,p=0),
stvalue=list(),upper=list(),lower=list(),
fixvalue=list(galpha=list(design=list("F","M"),value=c(5.87,3.67)),
gbeta=list(design=list("F","M"),value=c(2.52,1.73)),s=1.57,nu=0.58))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.