Nothing
#' Jeffreys' Prior with two parameters
#' @param ggd gradient of the expected information matrix
#' @param detg determinant of the expected information matrix
#' @param ggi inverse of the expected information matrix
#'
#' @return Vector of 2 values
jpf2p=function(ggd,detg,ggi){
dgd1=ggd[1,,]
dgd2=ggd[2,,]
lambdad_jp=matrix(0,2)
if(!is.na(detg)){
if(detg>=0){
lambdad_jp[1]=0.5*sqrt(max(0,detg))*sum(diag(ggi%*%dgd1))
lambdad_jp[2]=0.5*sqrt(max(0,detg))*sum(diag(ggi%*%dgd2))
}
}
return(lambdad_jp)
}
#' Jeffreys' Prior with three parameters
#' @param ggd gradient of the expected information matrix
#' @param detg determinant of the expected information matrix
#' @param ggi inverse of the expected information matrix
#'
#' @return Vector of 3 values
jpf3p=function(ggd,detg,ggi){
dgd1=ggd[1,,]
dgd2=ggd[2,,]
dgd3=ggd[3,,]
lambdad_jp=matrix(0,3)
if(!is.na(detg)){
if(detg>=0){
lambdad_jp[1]=0.5*sqrt(max(0,detg))*sum(diag(ggi%*%dgd1))
lambdad_jp[2]=0.5*sqrt(max(0,detg))*sum(diag(ggi%*%dgd2))
lambdad_jp[3]=0.5*sqrt(max(0,detg))*sum(diag(ggi%*%dgd3))
}
}
return(lambdad_jp)
}
#' Jeffreys' Prior with four parameters
#' @param ggd gradient of the expected information matrix
#' @param detg determinant of the expected information matrix
#' @param ggi inverse of the expected information matrix
#' @return Vector of 4 values
jpf4p=function(ggd,detg,ggi){
dgd1=ggd[1,,]
dgd2=ggd[2,,]
dgd3=ggd[3,,]
dgd4=ggd[4,,]
lambdad_jp=matrix(0,4)
if(!is.na(detg)){
if(detg>=0){
lambdad_jp[1]=0.5*sqrt(max(0,detg))*sum(diag(ggi%*%dgd1))
lambdad_jp[2]=0.5*sqrt(max(0,detg))*sum(diag(ggi%*%dgd2))
lambdad_jp[3]=0.5*sqrt(max(0,detg))*sum(diag(ggi%*%dgd3))
lambdad_jp[4]=0.5*sqrt(max(0,detg))*sum(diag(ggi%*%dgd4))
}
}
return(lambdad_jp)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.