Nothing
######################################################################
#' First derivative of the density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Vector
#' @inheritParams manf
weibull_p2_fd=function (x, t, v1, v2, v3)
{
.e2 <- t * v3 + v2
.e3 <- exp(.e2)
.e4 <- x/.e3
.e5 <- v1 - 1
.e6 <- .e4^.e5
.e8 <- exp(-.e4^v1)
.e15 <- x * (v1 * .e4^(2 * .e5) - .e5 * .e4^(v1 - 2))/.e3 -
.e6
c(v1 = (.e6 + v1 * (.e6 - .e4^(2 * v1 - 1)) * (log(x) - .e2)) *
.e8/.e3, v2 = v1 * .e8 * .e15/.e3, v3 = t * v1 * .e8 *
.e15/.e3)
}
######################################################################
#' Second derivative of the density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Matrix
#' @inheritParams manf
weibull_p2_fdd=function (x, t, v1, v2, v3)
{
.e2 <- t * v3 + v2
.e3 <- exp(.e2)
.e4 <- x/.e3
.e5 <- v1 - 1
.e6 <- .e4^.e5
.e7 <- v1 - 2
.e8 <- .e4^.e7
.e9 <- 2 * .e5
.e11 <- log(x) - .e2
.e12 <- .e4^.e9
.e13 <- 2 * v1
.e14 <- .e4^v1
.e15 <- .e13 - 1
.e16 <- .e5 * .e8
.e18 <- .e4^.e15
.e19 <- exp(-.e14)
.e20 <- v1 * .e12
.e24 <- x * (.e20 - .e16)/.e3 - .e6
.e25 <- .e6 - .e18
.e28 <- .e6 + x * ((.e8 + 2 * .e8 + x * (.e7 * .e4^(v1 -
3) - 2 * (v1 * .e4^(.e9 - 1)))/.e3) * .e5 + v1 * (.e24 *
.e6 - 2 * .e12))/.e3
.e29 <- .e6 + v1 * .e25 * .e11
.e35 <- (1 - v1 * .e11 * .e14) * .e24 + v1 * (x * ((2 * .e20 -
.e16) * .e11 + .e12 - .e8)/.e3 - .e11 * .e6)
.e42 <- t * v1 * .e28 * .e19/.e3
.e44 <- v1 * (.e18 + x * ((.e15 * .e4^(.e13 - 2) - .e16) *
.e11 + .e29 * .e6)/.e3 - (.e25 * .e11 + .e6)) - (.e6 +
x * .e5 * .e8/.e3)
c(v1 = c(v1 = (2 * .e6 + v1 * (.e6 - 2 * .e18) * .e11 - (.e29 *
.e14 + .e18)) * .e19 * .e11/.e3, v2 = .e35 * .e19/.e3,
v3 = t * .e35 * .e19/.e3), v2 = c(v1 = .e19 * .e44/.e3,
v2 = v1 * .e28 * .e19/.e3, v3 = .e42), v3 = c(v1 = t *
.e19 * .e44/.e3, v2 = .e42, v3 = t^2 * v1 * .e28 * .e19/.e3))
}
######################################################################
#' First derivative of the cdf
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Vector
#' @inheritParams manf
weibull_p2_pd=function (x, t, v1, v2, v3)
{
.e2 <- t * v3 + v2
.e4 <- exp(-.e2)
.e5 <- x * .e4
.e6 <- .e5^v1
.e8 <- exp(-.e6)
.e9 <- .e5^(v1 - 1)
c(v1 = .e8 * (log(x) - .e2) * .e6, v2 = -(v1 * x * .e4 *
.e8 * .e9), v3 = -(t * v1 * x * .e4 * .e8 * .e9))
}
######################################################################
#' Second derivative of the cdf
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Matrix
#' @inheritParams manf
weibull_p2_pdd=function (x, t, v1, v2, v3)
{
.e2 <- t * v3 + v2
.e4 <- exp(-.e2)
.e5 <- x * .e4
.e6 <- v1 - 1
.e7 <- .e5^.e6
.e8 <- .e5^v1
.e10 <- exp(-.e8)
.e12 <- log(x) - .e2
.e13 <- v1 * x
.e14 <- .e13 * .e4
.e16 <- (.e14 * .e7 - 1) * .e7 - .e5 * .e6 * .e5^(v1 - 2)
.e17 <- v1 * .e12
.e19 <- .e14 * .e12 * .e7
.e20 <- -(t * v1 * x * .e16 * .e4 * .e10)
.e22 <- (1 - .e17 * .e8) * .e7 + .e17 * .e7
.e24 <- (.e19 - 1) * .e8 - .e19
c(v1 = c(v1 = (.e8 - .e5^(2 * v1)) * .e10 * .e12^2, v2 = -(x *
.e22 * .e4 * .e10), v3 = -(t * x * .e22 * .e4 * .e10)),
v2 = c(v1 = .e24 * .e10, v2 = -(.e13 * .e16 * .e4 * .e10),
v3 = .e20), v3 = c(v1 = t * .e24 * .e10, v2 = .e20,
v3 = -(t^2 * v1 * x * .e16 * .e4 * .e10)))
}
############################################################
#' Second derivative of the log density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Matrix
#' @inheritParams manf
weibull_p2_logfdd=function (x, t, v1, v2, v3)
{
.e2 <- t * v3 + v2
.e3 <- exp(.e2)
.e4 <- x/.e3
.e5 <- v1 - 1
.e6 <- .e4^.e5
.e8 <- log(x) - .e2
.e9 <- .e6 + x * .e5 * .e4^(v1 - 2)/.e3
.e10 <- .e4^v1
.e11 <- v1 * x
.e12 <- -(t * v1 * x * .e9/.e3)
.e15 <- 1 - (.e10 + .e11 * .e8 * .e6/.e3)
.e18 <- x * (.e6 + v1 * .e8 * .e6)/.e3 - 1
c(v1 = c(v1 = -(.e8^2 * .e10 + 1/v1^2), v2 = .e18, v3 = t *
.e18), v2 = c(v1 = -.e15, v2 = -(.e11 * .e9/.e3), v3 = .e12),
v3 = c(v1 = -(t * .e15), v2 = .e12, v3 = -(t^2 * v1 *
x * .e9/.e3)))
}
############################################################
#' Third derivative of the log density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns 3d array
#' @inheritParams manf
weibull_p2_logfddd=function (x, t, v1, v2, v3)
{
.e2 <- t * v3 + v2
.e3 <- exp(.e2)
.e4 <- x/.e3
.e5 <- v1 - 1
.e6 <- .e4^.e5
.e7 <- v1 - 2
.e8 <- .e4^.e7
.e10 <- log(x) - .e2
.e13 <- x * .e5 * .e8/.e3
.e15 <- (.e6 + .e13) * .e10 + .e6
.e16 <- .e6 + x * (.e8 + 2 * .e8 + x * .e7 * .e4^(v1 - 3)/.e3) *
.e5/.e3
.e17 <- t^2
.e18 <- .e4^v1
.e20 <- t * v1 * x
.e21 <- t * x
.e22 <- .e15 + .e6
.e29 <- .e6 + v1 * .e15 + .e13
.e31 <- .e6 + v1 * (.e10 * .e6 + x * (.e10 * .e5 * .e8 +
.e8)/.e3) + .e13
.e33 <- .e17 * v1 * x
.e35 <- v1 * .e10 * .e6
.e36 <- v1 * x
.e38 <- .e20 * .e16/.e3
.e40 <- .e33 * .e16/.e3
.e42 <- -(.e21 * .e29/.e3)
.e43 <- -(.e21 * .e31/.e3)
.e45 <- .e18 + x * (.e6 + .e35)/.e3
.e47 <- 2 * .e6 + .e35
.e49 <- 2 * .e18 + .e36 * .e10 * .e6/.e3
.e50 <- c(v1 = -(.e20 * .e22/.e3), v2 = .e38, v3 = .e40)
.e51 <- .e17 * x
c(v1 = c(v1 = c(v1 = -(.e10^3 * .e18 - 2/v1^3), v2 = x *
.e47 * .e10/.e3, v3 = .e21 * .e47 * .e10/.e3), v2 = c(v1 = .e45 *
.e10, v2 = -(x * .e31/.e3), v3 = .e43), v3 = c(v1 = t *
.e45 * .e10, v2 = .e43, v3 = -(.e51 * .e31/.e3))), v2 = c(v1 = c(v1 = .e49 *
.e10, v2 = -(x * .e29/.e3), v3 = .e42), v2 = c(v1 = -(.e36 *
.e22/.e3), v2 = .e36 * .e16/.e3, v3 = .e38), v3 = .e50),
v3 = c(v1 = c(v1 = t * .e49 * .e10, v2 = .e42, v3 = -(.e51 *
.e29/.e3)), v2 = .e50, v3 = c(v1 = -(.e33 * .e22/.e3),
v2 = .e40, v3 = t^3 * v1 * x * .e16/.e3)))
}
############################################################
#' The first derivative of the density
#' @returns Vector
#' @inheritParams manf
weibull_p2_f1fa=function(x,t,v1,v2,v3){
vf=Vectorize(weibull_p2_fd)
f1=vf(x,t,v1,v2,v3)
return(f1)
}
############################################################
#' The second derivative of the density
#' @returns Matrix
#' @inheritParams manf
weibull_p2_f2fa=function(x,t,v1,v2,v3){
nx=length(x)
vf=Vectorize(weibull_p2_fdd)
temp1=vf(x,t,v1,v2,v3)
f2=deriv_copyfdd(temp1,nx,dim=3)
return(f2)
}
############################################################
#' The first derivative of the cdf
#' @returns Vector
#' @inheritParams manf
weibull_p2_p1fa=function(x,t,v1,v2,v3){
vf=Vectorize(weibull_p2_pd)
p1=vf(x,t,v1,v2,v3)
return(p1)
}
############################################################
#' The second derivative of the cdf
#' @returns Matrix
#' @inheritParams manf
weibull_p2_p2fa=function(x,t,v1,v2,v3){
nx=length(x)
vf=Vectorize(weibull_p2_pdd)
temp1=vf(x,t,v1,v2,v3)
p2=deriv_copyfdd(temp1,nx,dim=3)
return(p2)
}
############################################################
#' Minus the first derivative of the cdf, at alpha
#' @returns Vector
#' @inheritParams manf
weibull_p2_mu1fa=function(alpha,t,v1,v2,v3){
x=qweibull((1-alpha),shape=v1,scale=exp(v2+v3*t))
vf=Vectorize(weibull_p2_pd)
mu1=-vf(x,t,v1,v2,v3)
return(mu1)
}
############################################################
#' Minus the second derivative of the cdf, at alpha
#' @returns Matrix
#' @inheritParams manf
weibull_p2_mu2fa=function(alpha,t,v1,v2,v3){
x=qweibull((1-alpha),shape=v1,scale=exp(v2+v3*t))
nx=length(x)
vf=Vectorize(weibull_p2_pdd)
temp1=vf(x,t,v1,v2,v3)
mu2=-deriv_copyfdd(temp1,nx,dim=3)
return(mu2)
}
############################################################
#' The second derivative of the normalized log-likelihood
#' @returns Matrix
#' @inheritParams manf
weibull_p2_ldda=function(x,t,v1,v2,v3){
nx=length(x)
vf=Vectorize(weibull_p2_logfdd)
temp1=vf(x,t,v1,v2,v3)
ldd=deriv_copyldd(temp1,nx,dim=3)
return(ldd)
}
############################################################
#' The third derivative of the normalized log-likelihood
#' @returns 3d array
#' @inheritParams manf
weibull_p2_lddda=function(x,t,v1,v2,v3){
nx=length(x)
vf=Vectorize(weibull_p2_logfddd)
temp1=vf(x,t,v1,v2,v3)
lddd=deriv_copylddd(temp1,nx,dim=3)
return(lddd)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.