Nothing
######################################################################
#' First derivative of the density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Vector
#' @inheritParams manf
gev_p12k3_fd=function (x, t1, t2, v1, v2, v3, v4, v5)
{
.e2 <- exp(-(t2 * v4 + v3))
.e3 <- 1/v5
.e6 <- x - (t1 * v2 + v1)
.e7 <- 1 + v5 * .e2 * .e6
.e8 <- 1 + .e3
.e13 <- exp(-.e7^-.e3)
.e16 <- v5 * .e8/.e7^(.e3 + 2) - 1/.e7^(2 * .e8)
.e21 <- .e2 * .e16 * .e6 - 1/.e7^.e8
.e22 <- .e2^2
c(v1 = .e13 * .e22 * .e16, v2 = t1 * .e13 * .e22 * .e16,
v3 = .e13 * .e2 * .e21, v4 = t2 * .e13 * .e2 * .e21)
}
######################################################################
#' Second derivative of the density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Matrix
#' @inheritParams manf
gev_p12k3_fdd=function (x, t1, t2, v1, v2, v3, v4, v5)
{
.e1 <- 1/v5
.e3 <- exp(-(t2 * v4 + v3))
.e6 <- x - (t1 * v2 + v1)
.e7 <- 1 + v5 * .e3 * .e6
.e8 <- 1 + .e1
.e9 <- .e1 + 2
.e10 <- 2 * .e8
.e11 <- v5 * .e8
.e12 <- .e7^.e8
.e13 <- .e7^.e9
.e15 <- 1/.e7^.e10
.e20 <- exp(-.e7^-.e1)
.e22 <- .e11/.e13 - .e15
.e25 <- v5 * .e7^(.e8 - 2 * .e9) * .e9 - 2/.e7^(1 + .e10)
.e29 <- .e15 + .e11 * (.e3 * .e25 * .e6 - (.e7^(.e1 - .e10) +
1/.e13))
.e32 <- .e3 * .e22 * .e6 - 1/.e12
.e34 <- .e3 * .e6/.e12
.e35 <- .e3^2
.e39 <- .e29 * .e3 * .e6 - (1 + .e34) * .e32
.e43 <- .e29 - .e32/.e12
.e44 <- .e3^3
.e46 <- .e11 * .e25 - .e22/.e12
.e50 <- .e11 * .e3 * .e25 * .e6 - (2 + .e34) * .e22
.e51 <- t1 * .e20
.e53 <- .e51 * .e44 * .e46
.e54 <- t1 * t2
.e57 <- t2 * .e39 * .e20 * .e3
c(v1 = c(v1 = .e20 * .e44 * .e46, v2 = .e53, v3 = .e43 *
.e20 * .e35, v4 = t2 * .e43 * .e20 * .e35), v2 = c(v1 = .e53,
v2 = t1^2 * .e20 * .e44 * .e46, v3 = t1 * .e43 * .e20 *
.e35, v4 = .e54 * .e43 * .e20 * .e35), v3 = c(v1 = .e20 *
.e35 * .e50, v2 = .e51 * .e35 * .e50, v3 = .e39 * .e20 *
.e3, v4 = .e57), v4 = c(v1 = t2 * .e20 * .e35 * .e50,
v2 = .e54 * .e20 * .e35 * .e50, v3 = .e57, v4 = t2^2 *
.e39 * .e20 * .e3))
}
######################################################################
#' First derivative of the cdf
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Vector
#' @inheritParams manf
gev_p12k3_pd=function (x, t1, t2, v1, v2, v3, v4, v5)
{
.e2 <- exp(-(t2 * v4 + v3))
.e5 <- x - (t1 * v2 + v1)
.e6 <- 1 + v5 * .e2 * .e5
.e7 <- 1/v5
.e9 <- .e6^(1 + .e7)
.e10 <- exp(-.e6^-.e7)
.e11 <- .e10 * .e2
c(v1 = -(.e11/.e9), v2 = -(t1 * .e10 * .e2/.e9), v3 = -(.e11 *
.e5/.e9), v4 = -(t2 * .e10 * .e2 * .e5/.e9))
}
######################################################################
#' Second derivative of the cdf
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Matrix
#' @inheritParams manf
gev_p12k3_pdd=function (x, t1, t2, v1, v2, v3, v4, v5)
{
.e2 <- exp(-(t2 * v4 + v3))
.e3 <- 1/v5
.e6 <- x - (t1 * v2 + v1)
.e7 <- 1 + .e3
.e8 <- 1 + v5 * .e2 * .e6
.e10 <- 2 * .e7
.e13 <- exp(-.e8^-.e3)
.e15 <- v5 * .e7 * .e8^(.e3 - .e10)
.e19 <- .e15 * .e2 * .e6 - (1 + .e2 * .e6/.e8^.e7)/.e8^.e7
.e22 <- .e2^2
.e23 <- t1 * .e13
.e26 <- t2 * .e13 * .e2 * .e19
.e27 <- .e15 - 1/.e8^.e10
.e29 <- .e13 * .e2 * .e19
.e30 <- -.e29
.e31 <- -(.e23 * .e2 * .e19)
.e32 <- -(.e23 * .e22 * .e27)
.e33 <- -(t1 * t2 * .e13 * .e2 * .e19)
.e34 <- -(.e26 * .e6)
.e35 <- -.e26
c(v1 = c(v1 = -(.e13 * .e22 * .e27), v2 = .e32, v3 = .e30,
v4 = .e35), v2 = c(v1 = .e32, v2 = -(t1^2 * .e13 * .e22 *
.e27), v3 = .e31, v4 = .e33), v3 = c(v1 = .e30, v2 = .e31,
v3 = -(.e29 * .e6), v4 = .e34), v4 = c(v1 = .e35, v2 = .e33,
v3 = .e34, v4 = -(t2^2 * .e13 * .e2 * .e19 * .e6)))
}
############################################################
#' Second derivative of the log density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns Matrix
#' @inheritParams manf
gev_p12k3_logfdd=function (x, t1, t2, v1, v2, v3, v4, v5)
{
.e2 <- exp(-(t2 * v4 + v3))
.e5 <- x - (t1 * v2 + v1)
.e6 <- 1 + v5 * .e2 * .e5
.e7 <- 1/v5
.e9 <- 1/.e6^.e7
.e11 <- v5 * (1 + .e7)
.e14 <- v5 * (.e11 - .e9) - .e9
.e17 <- (1/.e6^(.e7 - 1) + .e2 * .e14 * .e5)/.e6 - .e11
.e18 <- .e6^2
.e19 <- .e2^2
.e21 <- t2 * .e17 * .e2
.e22 <- .e17 * .e2
.e23 <- .e22/.e6
.e26 <- t1 * .e17 * .e2/.e6
.e29 <- t1 * .e19 * .e14/.e18
.e33 <- t1 * t2 * .e17 * .e2/.e6
.e35 <- .e21 * .e5/.e6
.e36 <- .e21/.e6
c(v1 = c(v1 = .e19 * .e14/.e18, v2 = .e29, v3 = .e23, v4 = .e36),
v2 = c(v1 = .e29, v2 = t1^2 * .e19 * .e14/.e18, v3 = .e26,
v4 = .e33), v3 = c(v1 = .e23, v2 = .e26, v3 = .e22 *
.e5/.e6, v4 = .e35), v4 = c(v1 = .e36, v2 = .e33,
v3 = .e35, v4 = t2^2 * .e17 * .e2 * .e5/.e6))
}
############################################################
#' Third derivative of the log density
#' Created by Stephen Jewson
#' using Deriv() by Andrew Clausen and Serguei Sokol
#' @returns 3d array
#' @inheritParams manf
gev_p12k3_logfddd=function (x, t1, t2, v1, v2, v3, v4, v5)
{
.e2 <- exp(-(t2 * v4 + v3))
.e5 <- x - (t1 * v2 + v1)
.e6 <- 1/v5
.e7 <- 1 + v5 * .e2 * .e5
.e8 <- .e7^.e6
.e9 <- 1 + .e6
.e10 <- 1/.e8
.e11 <- .e6 - 1
.e12 <- v5 * .e9
.e13 <- .e7^.e11
.e14 <- 1/.e13
.e17 <- v5 * (.e12 - .e10) - .e10
.e20 <- .e2 * .e17 * .e5
.e22 <- .e7^(.e6 - (2 + 2 * .e11)) * .e11
.e24 <- (1/.e7^.e9 + v5/.e7^.e9) * .e2 * .e5
.e25 <- 2 * .e12
.e26 <- 2/.e13
.e33 <- ((2/.e8 + v5 * (.e22 + (.e14 + .e26 + .e20)/.e7 -
.e25) - .e24) * .e2 * .e5 - .e14)/.e7 + v5 * (((.e14 +
.e20)/.e7 - .e12) * .e2 * .e5/.e7 + 1 + .e6)
.e34 <- .e7^2
.e35 <- 2 * .e17
.e36 <- .e2^2
.e40 <- .e10 + v5 * (.e22 + (.e14 + 2 * .e20 + .e26)/.e7 -
.e25) - .e24
.e43 <- v5 * (.e35 - .e10) - .e10
.e44 <- t1 * t2
.e45 <- t1^2
.e47 <- t2 * .e33 * .e2
.e48 <- t2^2
.e49 <- .e7^3
.e53 <- .e2 * .e43 * .e5/.e7 - .e35
.e54 <- .e2^3
.e57 <- .e44 * .e33 * .e2/.e7
.e58 <- .e47/.e7
.e60 <- .e48 * .e33 * .e2
.e61 <- .e33 * .e2
.e64 <- t1 * .e40 * .e36/.e34
.e67 <- .e44 * .e40 * .e36/.e34
.e68 <- .e61/.e7
.e71 <- t1 * .e33 * .e2/.e7
.e74 <- t1 * .e54 * .e43/.e49
.e78 <- t1 * .e48 * .e33 * .e2/.e7
.e81 <- .e45 * .e54 * .e43/.e49
.e82 <- .e45 * t2
.e84 <- .e47 * .e5/.e7
.e86 <- .e60 * .e5/.e7
.e87 <- .e60/.e7
.e89 <- .e40 * .e36/.e34
.e90 <- c(v1 = .e74, v2 = .e81, v3 = .e64, v4 = .e67)
.e91 <- c(v1 = .e58, v2 = .e57, v3 = .e84, v4 = .e86)
.e94 <- t1 * .e36 * .e53/.e34
.e97 <- .e44 * .e36 * .e53/.e34
.e100 <- .e45 * .e40 * .e36/.e34
.e103 <- .e82 * .e40 * .e36/.e34
.e106 <- t2 * .e40 * .e36/.e34
c(v1 = c(v1 = c(v1 = .e54 * .e43/.e49, v2 = .e74, v3 = .e89,
v4 = .e106), v2 = .e90, v3 = c(v1 = .e89, v2 = .e64,
v3 = .e68, v4 = .e58), v4 = c(v1 = .e106, v2 = .e67,
v3 = .e58, v4 = .e87)), v2 = c(v1 = .e90, v2 = c(v1 = .e81,
v2 = t1^3 * .e54 * .e43/.e49, v3 = .e100, v4 = .e103),
v3 = c(v1 = .e64, v2 = .e100, v3 = .e71, v4 = .e57),
v4 = c(v1 = .e67, v2 = .e103, v3 = .e57, v4 = .e78)),
v3 = c(v1 = c(v1 = .e36 * .e53/.e34, v2 = .e94, v3 = .e68,
v4 = .e58), v2 = c(v1 = .e94, v2 = .e45 * .e36 *
.e53/.e34, v3 = .e71, v4 = .e57), v3 = c(v1 = .e68,
v2 = .e71, v3 = .e61 * .e5/.e7, v4 = .e84), v4 = .e91),
v4 = c(v1 = c(v1 = t2 * .e36 * .e53/.e34, v2 = .e97,
v3 = .e58, v4 = .e87), v2 = c(v1 = .e97, v2 = .e82 *
.e36 * .e53/.e34, v3 = .e57, v4 = .e78), v3 = .e91,
v4 = c(v1 = .e87, v2 = .e78, v3 = .e86, v4 = t2^3 *
.e33 * .e2 * .e5/.e7)))
}
############################################################
#' The first derivative of the density
#' @returns Vector
#' @inheritParams manf
gev_p12k3_f1fa=function(x,t,v1,v2,v3,v4,kshape){
kshape=movexiawayfromzero(kshape)
vf=Vectorize(gev_p12k3_fd)
f1=vf(x,t[,1],t[,2],v1,v2,v3,v4,kshape)
return(f1)
}
############################################################
#' The second derivative of the density
#' @returns Matrix
#' @inheritParams manf
gev_p12k3_f2fa=function(x,t,v1,v2,v3,v4,kshape){
nx=length(x)
kshape=movexiawayfromzero(kshape)
vf=Vectorize(gev_p12k3_fdd)
temp1=vf(x,t[,1],t[,2],v1,v2,v3,v4,kshape)
f2=deriv_copyfdd(temp1,nx,dim=4)
return(f2)
}
############################################################
#' Minus the first derivative of the cdf, at alpha
#' @returns Vector
#' @inheritParams manf
gev_p12k3_mu1fa=function(alpha,t,v1,v2,v3,v4,kshape){
x=extraDistr::qgev((1-alpha),mu=v1+v2*t[,1],sigma=exp(v3+v4*t[,2]),xi=kshape)
kshape=movexiawayfromzero(kshape)
vf=Vectorize(gev_p12k3_pd)
mu1=-vf(x,t[,1],t[,2],v1,v2,v3,v4,kshape)
return(mu1)
}
############################################################
#' Minus the second derivative of the cdf, at alpha
#' @returns Matrix
#' @inheritParams manf
gev_p12k3_mu2fa=function(alpha,t,v1,v2,v3,v4,kshape){
x=extraDistr::qgev((1-alpha),mu=v1+v2*t[,1],sigma=exp(v3+v4*t[,2]),xi=kshape)
nx=length(x)
kshape=movexiawayfromzero(kshape)
vf=Vectorize(gev_p12k3_pdd)
temp1=vf(x,t[,1],t[,2],v1,v2,v3,v4,kshape)
mu2=-deriv_copyfdd(temp1,nx,dim=4)
return(mu2)
}
############################################################
#' The second derivative of the normalized log-likelihood
#' @returns Matrix
#' @inheritParams manf
gev_p12k3_ldda=function(x,t,v1,v2,v3,v4,kshape){
nx=length(x)
kshape=movexiawayfromzero(kshape)
vf=Vectorize(gev_p12k3_logfdd)
temp1=vf(x,t[,1],t[,2],v1,v2,v3,v4,kshape)
ldd=deriv_copyldd(temp1,nx,dim=4)
return(ldd)
}
############################################################
#' The third derivative of the normalized log-likelihood
#' @returns 3d array
#' @inheritParams manf
gev_p12k3_lddda=function(x,t,v1,v2,v3,v4,kshape){
nx=length(x)
vf=Vectorize(gev_p12k3_logfddd)
kshape=movexiawayfromzero(kshape)
temp1=vf(x,t[,1],t[,2],v1,v2,v3,v4,kshape)
lddd=deriv_copylddd(temp1,nx,dim=4)
return(lddd)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.