flare-internal | R Documentation |
Internal flare functions
sugm.likelihood(Sigma, Omega) sugm.tracel2(Sigma, Omega) sugm.cv(obj, loss=c("likelihood", "tracel2"), fold=5) part.cv(n, fold) sugm.clime.ladm.scr(Sigma, lambda, nlambda, n, d, maxdf, rho, shrink, prec, max.ite, verbose) sugm.tiger.ladm.scr(data, n, d, maxdf, rho, lambda, shrink, prec, max.ite, verbose) slim.lad.ladm.scr.btr(Y, X, lambda, nlambda, n, d, maxdf, rho, max.ite, prec, intercept, verbose) slim.sqrt.ladm.scr(Y, X, lambda, nlambda, n, d, maxdf, rho, max.ite, prec, intercept, verbose) slim.dantzig.ladm.scr(Y, X, lambda, nlambda, n, d, maxdf, rho, max.ite, prec, intercept, verbose) slim.lq.ladm.scr.btr(Y, X, q, lambda, nlambda, n, d, maxdf, rho, max.ite, prec, intercept, verbose) slim.lasso.ladm.scr(Y, X, lambda, nlambda, n, d, maxdf, max.ite, prec, intercept, verbose)
Sigma |
Covariance matrix. |
Omega |
Inverse covariance matrix. |
obj |
An object with S3 class returned from |
loss |
Type of loss function for cross validation. |
fold |
The number of fold for cross validatio. |
n |
The number of observations (sample size). |
d |
Dimension of data. |
maxdf |
Maximal degree of freedom. |
lambda |
Grid of non-negative values for the regularization parameter lambda. |
nlambda |
The number of the regularization parameter lambda. |
shrink |
Shrinkage of regularization parameter based on precision of estimation. |
rho |
Value of augmented Lagrangian multipiler. |
prec |
Stopping criterion. |
max.ite |
Maximal value of iterations. |
data |
|
Y |
Dependent variables in linear regression. |
X |
Design matrix in linear regression. |
q |
The vector norm used for the loss term. |
intercept |
The indicator of whether including intercepts specifically. |
verbose |
Tracing information printing is disabled if |
These are not intended for use by users.
Xingguo Li, Tuo Zhao, Lie Wang, Xiaoming Yuan and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>
sugm
, slim
and flare-package
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.