Nothing
msmJustOne = function(params.0, sp, pen.matr.S.lambda, pmethod, suStf, death,
Q.diagnostics = FALSE, parallel, no_cores, justComp = NULL){
Qmatr.diagnostics.list = gradient = hessian = NULL
# Unpack necessary variables -------------------------------------------------------------------
data = suStf$data # HERE WE USED TO HAVE $data BUT I THINK THAT IN ALL OTHER TESTS I NORMALLY DO data AND data.long COINCIDE (not in no intercept test though)
nstates = suStf$nstates
start.pos.par = suStf$start.pos.par
pos.optparams = suStf$pos.optparams
pos.optparams2 = suStf$pos.optparams2
l.short.formula = suStf$l.short.formula
whereQ = suStf$whereQ
full.X = suStf$full.X
Sl.sf = suStf$Sl.sf # what is the difference between Sl.sf and S.list ? (check this - it seems former is only for EFS)
start.pos.par.only.smooth = suStf$start.pos.par.only.smooth
start.pos.par.only.smooth.FPC = suStf$start.pos.par.only.smooth.FPC
start.pos.par.detailed = suStf$start.pos.par.detailed
MM = list(start.pos.par = start.pos.par,
pos.optparams = pos.optparams,
pos.optparams2 = pos.optparams2,
l.short.formula = l.short.formula,
whereQ = whereQ,
nstates = nstates,
l.params = length(params.0),
cens.state = suStf$cens.state)
# ******************** #
# Penalty matrix setup #
# ******************** #
# Setup full penalty matrix to be used for penalized likelihood estimation
pen.matr.S.lambda = penalty.setup(sp = sp, suStf = suStf)
pen.matr.S.lambda = pen.matr.S.lambda[1:max(pos.optparams2) == pos.optparams2, 1:max(pos.optparams2) == pos.optparams2]
# ----------------------------------------------------------------------------------------------
do.grad.inner = ifelse('grad' %in% justComp, TRUE, FALSE)
do.hess.inner = ifelse('hess' %in% justComp, TRUE, FALSE)
singleComp <- LikGradHess.CM(params.0, data = data, full.X = full.X, MM = MM, pen.matr.S.lambda = pen.matr.S.lambda, # *****
aggregated.provided = FALSE, do.gradient = do.grad.inner, do.hessian = do.hess.inner,
pmethod = pmethod, death = death,
Qmatr.diagnostics.list = Qmatr.diagnostics.list,
parallel = parallel, no_cores = no_cores,
P.save.all = TRUE, CM.comp = TRUE)
if(do.grad.inner) gradient = singleComp$gradient
if(do.hess.inner) hessian = singleComp$hessian
list(value = singleComp$value, gradient = gradient, hessian = hessian,
argument = params.0,
S.h = singleComp$S.h, S.h1 = singleComp$S.h1, S.h2 = singleComp$S.h2,
apprHessian = singleComp$apprHessian,
l = singleComp$l,
Qmatr.diagnostics.list = singleComp$Qmatr.diagnostics.list,
sp = sp,
P.hist = singleComp$P.hist,
dP.hist = singleComp$dP.hist,
d2P.hist = singleComp$d2P.hist,
ind.CM = singleComp$ind.CM,
P.CM.contr = singleComp$P.CM.contr)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.