Nothing
context("test_utlis")
#analyze_unkown_mods
test_that("analyze_unknown_mods is succesful", {
data <- tibble::tibble(
"traceR_mod.peptides" = c("AACLLPK", "ALTDM(UniMod:35)PQM(UniMod:35)R", "ALTDM(DummyModification)PQMK", "ALTDM(UniMod:35)PQM(UniMod:35)R", "ALTDM(DummyModification)PQMK"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, TRUE, FALSE, TRUE),
"traceR_precursor" = c("AACLLPK2", "ALTDM(UniMod:35)PQM(UniMod:35)R2", "ALTDM(DummyModification)PQMK3", "ALTDM(UniMod:35)PQM(UniMod:35)R2", "ALTDM(DummyModification)PQMK3"),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, TRUE, FALSE, TRUE)
)
#precursor level
output_plot <- analyze_unknown_mods(input_df = data, level = "precursor", plot = TRUE, plot_characteristic = "relative")
output_report <- analyze_unknown_mods(input_df = data, level = "precursor", plot = FALSE)
expect_error(analyze_unknown_mods(input_df = data[, 1:2], level = "precursor", plot = FALSE), "For precursor level: traceR_precursor and traceR_precursor_unknownMods columns must be present in submitted data.")
expect_s3_class(output_plot, "ggplot")
expect_s3_class(output_report, "tbl")
expect_equal(nrow(output_report), 2)
expect_equal(ncol(output_report), 3)
expect_equal(output_report$absolute_count , c(2, 1))
#modified peptide level
output_plot <- analyze_unknown_mods(input_df = data, level = "modified_peptides", plot = TRUE, plot_characteristic = "relative")
output_report <- analyze_unknown_mods(input_df = data, level = "modified_peptides", plot = FALSE)
expect_error(analyze_unknown_mods(input_df = data[, 3:4], level = "modified_peptides", plot = FALSE), "For peptide level: traceR_mod.peptides and traceR_mod.peptides_unknownMods columns must be present in submitted data.")
expect_s3_class(output_plot, "ggplot")
expect_s3_class(output_report, "tbl")
expect_equal(nrow(output_report), 2)
expect_equal(ncol(output_report), 3)
expect_equal(output_report$absolute_count , c(2, 1))
})
#sort_string_pg
test_that("sort_string_pg is succesful", {
data <- tibble::tibble(
"ProteinGroups" = c("P0234; A03235", "XCasdk1; B0234s")
)
output <- sort_string_pg(input_df = data, sort_column = "ProteinGroups", split_pattern = ";")
expect_type(output, "character")
expect_equal(length(output), 2)
expect_equal(output , c("A03235;P0234", "B0234s;XCasdk1"))
})
#analyze_string_pg
test_that("analyze_string_pg is succesful", {
data <- tibble::tibble(
"ProteinGroups_input_df1" = c("A03235;P0234", "B0234s", "Q65089"),
"traceR_precursor" = c("A1", "B2", "C2"),
"ProteinGroups_input_df2" = c("P0234", "A0505YV", "Q65089")
)
output <- analyze_string_pg(input_df = data)
expect_s3_class(output, "tbl")
expect_equal(nrow(output), 1)
expect_equal(output$ProteinGroups_input_df2 , c("A0505YV"))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.