R/components.R

Defines functions seasextract_w_na_action remainder trendcycle seasonal

Documented in remainder seasonal trendcycle

# Functions to extract components from time series decomposition
# These should match corresponding functions in the seasonal package
# providing similar functional for stl, decomposed.ts and tbats objects

#' Extract components from a time series decomposition
#'
#' Returns a univariate time series equal to either a seasonal component,
#' trend-cycle component or remainder component from a time series
#' decomposition.
#'
#' @param object Object created by \code{\link[stats]{decompose}},
#' \code{\link[stats]{stl}} or \code{\link{tbats}}.
#' @return Univariate time series.
#' @author Rob J Hyndman
#' @seealso \code{\link[stats]{stl}}, \code{\link[stats]{decompose}},
#' \code{\link{tbats}}, \code{\link{seasadj}}.
#' @keywords ts
#' @examples
#' plot(USAccDeaths)
#' fit <- stl(USAccDeaths, s.window="periodic")
#' lines(trendcycle(fit),col="red")
#'
#' library(ggplot2)
#' autoplot(cbind(
#' 	    Data=USAccDeaths,
#' 	    Seasonal=seasonal(fit),
#'   	  Trend=trendcycle(fit),
#' 	    Remainder=remainder(fit)),
#'     facets=TRUE) +
#'   ylab("") + xlab("Year")
#'
#' @export
seasonal <- function(object) {
  if ("mstl" %in% class(object)) {
    cols <- grep("Season", colnames(object))
    return(object[, cols])
  }
  else if ("stl" %in% class(object)) {
    return(object$time.series[, "seasonal"])
  } else if ("decomposed.ts" %in% class(object)) {
    return(object$seasonal)
  } else if ("tbats" %in% class(object)) {
    comp <- tbats.components(object)
    scols <- grep("season", colnames(comp))
    season <- ts(rowSums(comp[, scols, drop = FALSE]))
    if (!is.null(object$lambda)) {
      season <- InvBoxCox(season, object$lambda)
    }
    tsp(season) <- tsp(comp)
    return(season)
  }
  else if ("seas" %in% class(object)) {
    return(object$data[, "seasonal"])
  } else {
    stop("Unknown object type")
  }
}

#' @rdname seasonal
#' @export
trendcycle <- function(object) {
  if ("mstl" %in% class(object)) {
    return(object[, "Trend"])
  } else if ("stl" %in% class(object)) {
    return(object$time.series[, "trend"])
  } else if ("decomposed.ts" %in% class(object)) {
    return(object$trend)
  } # 	else if("tbats" %in% class(object))
  # 	{
  #     trnd <- tbats.components(object)[,"level"]
  #     if (!is.null(object$lambda))
  #       trnd <- InvBoxCox(trnd, object$lambda)
  #     return(trnd)
  #   }
  else if ("seas" %in% class(object)) {
    return(seasextract_w_na_action(object, "trend"))
  } else {
    stop("Unknown object type")
  }
}

#' @rdname seasonal
#' @export
remainder <- function(object) {
  if ("mstl" %in% class(object)) {
    return(object[, "Remainder"])
  } else if ("stl" %in% class(object)) {
    return(object$time.series[, "remainder"])
  } else if ("decomposed.ts" %in% class(object)) {
    return(object$random)
  } # 	else if("tbats" %in% class(object))
  # 	{
  # 		comp <- tbats.components(object)
  # 		trnd <- comp[,"level"]
  # 		scols <- grep("season",colnames(comp))
  #     season <- rowSums(comp[,scols,drop=FALSE])
  #     irreg <- ts(comp[,'observed'] - trnd - season)
  #     tsp(irreg) <- tsp(comp)
  #     return(irreg)
  #   }
  else if ("seas" %in% class(object)) {
    return(seasextract_w_na_action(object, "irregular"))
  } else {
    stop("Unknown object type")
  }
}

## Copied from seasonal:::extract_w_na_action
## Importing is problematic due to issues with ARM processors

seasextract_w_na_action <- function(x, name) {
  if (is.null(x$data)) {
    return(NULL)
  }
  z <- na.omit(x$data[, name])
  if (!is.null(x$na.action)) {
    if (attr(x$na.action, "class") == "exclude") {
      z <- ts(stats::napredict(x$na.action, z))
      tsp(z) <- tsp(x$x)
    }
  }
  z
}

Try the forecast package in your browser

Any scripts or data that you put into this service are public.

forecast documentation built on June 22, 2024, 9:20 a.m.