Nothing
#' US monthly employment data
#'
#' \code{us_employment} contains monthly US employment data from January 1939
#' to June 2019. Each `Series_ID` represents different sectors of the economy.
#'
#' @source
#' U.S. Bureau of Labor Statistics
#'
#' @name us_employment
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#'
#' us_employment
#'
NULL
#' Percentage changes in economic variables in the USA.
#'
#' \code{us_change} contains percentage changes in
#' quarterly personal consumption expenditure, personal disposable income,
#' production, savings and the unemployment rate for the US, 1970 to 2016.
#' Original $ values were in chained 2012 US dollars.
#'
#' @source Federal Reserve Bank of St Louis.
#'
#' @name us_change
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#'
#' us_change
#'
NULL
#' US finished motor gasoline product supplied.
#'
#' Weekly data beginning Week 6, 1991, and ending Week 3, 2017.
#' Units are "million barrels per day".
#'
#' @name us_gasoline
#' @docType data
#' @format Time series object of class `tsibble`.
#' @source US Energy Information Administration.
#' @keywords datasets
#' @examples
#'
#' us_gasoline
#'
NULL
#' Air Transport Passengers Australia
#'
#' Total annual air passengers (in millions) including domestic and
#' international aircraft passengers of air carriers registered in Australia.
#' 1970-2016.
#'
#' @name aus_airpassengers
#' @docType data
#' @format Annual time series of class `tsibble`.
#' @source World Bank.
#' @keywords datasets
#' @examples
#'
#' aus_airpassengers
#'
NULL
#' Rice production (Guinea)
#'
#' Total annual rice production (million metric tons) for Guinea. 1970-2011.
#'
#' @name guinea_rice
#' @docType data
#' @format Annual time series of class `tsibble`.
#' @source World Bank.
#' @keywords datasets
#' @examples
#'
#' guinea_rice
#'
NULL
#' Boston marathon winning times since 1897
#'
#' Winning times for events at the Boston Marathon.
#' 1897-2019.
#'
#' @name boston_marathon
#' @docType data
#' @format Annual time series of class `tsibble`.
#' @source Boston Athletic Association.
#' \url{https://www.baa.org/races/boston-marathon/results/champions}
#'
#' @keywords datasets
#' @examples
#'
#' boston_marathon
#'
NULL
#' Monthly Canadian gas production
#'
#' Monthly Canadian gas production, billions of cubic metres, January 1960 -
#' February 2005
#'
#' @name canadian_gas
#' @docType data
#' @format Monthly time series of class `tsibble`.
#' @references \url{http://www.exponentialsmoothing.net}
#' @source Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D., (2008)
#' \emph{Forecasting with exponential smoothing: the state space approach},
#' Springer.
#' @keywords datasets
#' @examples
#'
#' canadian_gas
#'
NULL
#' International Arrivals to Australia
#'
#' Quarterly international arrivals to Australia from Japan, New
#' Zealand, UK and the US. 1981Q1 - 2012Q3.
#'
#' @name aus_arrivals
#' @docType data
#' @format Quarterly time series of class `tsibble`.
#' @source Tourism Research Australia.
#' @keywords datasets
#' @examples
#'
#' aus_arrivals
#'
NULL
#' Call volume for a large North American commercial bank
#'
#' Five-minute call volume handled on weekdays between 7:00am and 9:05pm, beginning 3 March and 24 October 2003 (164 days).
#'
#' @name bank_calls
#' @docType data
#' @format Time series of class `tsibble` at 5 minute intervals.
#' @source Jonathan Weinberg
#' @references Weinberg, Brown & Stroud (2007) "Bayesian forecasting of an inhomogeneous Poisson process with applications to call center data" \emph{Journal of the American Statistical Associiation}, 102:480, 1185-1198.
#' @keywords datasets
#' @examples
#'
#' bank_calls
#'
NULL
#' Price series for various commodities
#'
#' Annual prices for eggs, chicken, copper, nails, oil and wheat.
#' Eggs, chicken, nails, oil and copper in $US; wheat in British pounds. All prices adjusted for inflation.
#'
#' @source Makridakis, Wheelwright and Hyndman (1998) *Forecasting: methods and applications*, John Wiley & Sons: New York. Chapter 9.
#' @name prices
#' @docType data
#' @format Annual time series of class `tsibble`.
#' @keywords datasets
#' @examples
#'
#' prices |> autoplot(wheat)
#'
NULL
#' Sales for a souvenir shop
#'
#' Monthly sales for a souvenir shop on the wharf at a beach resort town in Queensland, Australia.
#'
#' @source Makridakis, Wheelwright and Hyndman (1998) *Forecasting: methods and applications*, John Wiley & Sons: New York. Exercise 5.8.
#' @name souvenirs
#' @docType data
#' @format Monthly time series of class `tsibble`.
#' @keywords datasets
#' @examples
#'
#' souvenirs |> autoplot(Sales)
#'
NULL
#' Insurance quotations and advertising expenditure
#'
#' Monthly quotations and monthly television advertising expenditure for a US insurance company.
#' January 2002 to April 2005
#'
#' @source Kindly provided by Dave Reilly, Automatic Forecasting Systems.
#' @name insurance
#' @docType data
#' @format Monthly time series of class `tsibble`.
#' @keywords datasets
#' @examples
#'
#' insurance |>
#' ggplot(aes(x=TVadverts, y=Quotes)) + geom_point()
#'
NULL
#' Australian accommodation data
#'
#' \code{aus_accommodation} contains quarterly data on Australian tourist accommodation
#' from short-term non-residential accommodation with 15 or more rooms, 1998 Q1 - 2016 Q2.
#' The data set also contains the Australian Consumer Price Index (CPI) for the same period.
#' Takings are in millions of Australian dollars,
#' Occupancy is a percentage of rooms occupied,
#' CPI is an index with value 100 in 2012 Q1.
#'
#' @source
#' Australian Bureau of Statistics, Cat No 8635.0, Table 10, and Cat No 6401.0, Table 1.
#'
#' @name aus_accommodation
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#'
#' aus_accommodation
#'
NULL
#' Australian fertility rates
#'
#' \code{aus_fertility} contains annual data on one measured variable:
#' \tabular{ll}{
#' Rate: \tab Fertility rate (per thousand women)\cr
#' }
#'
#' Each series is uniquely identified using two keys:
#' \tabular{ll}{
#' Region: \tab Australia, states and territories\cr
#' Age: \tab Age of the woman\cr
#' }
#' based on calendar year of registration data. It covers the period from 1975--2022.
#'
#' @source Australian Bureau of Statistics. \url{https://www.abs.gov.au/statistics/people/population/births-australia/2022}
#'
#' @name aus_fertility
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#'
#' @examples
#' aus_fertility
#'
NULL
#' Monthly offences in NSW
#'
#' \code{nsw_offences} contains monthly data with one measured variable:
#' \tabular{ll}{
#' Count: \tab Number of offences reported \cr
#' }
#'
#' Each series is uniquely identified using one key:
#' \tabular{ll}{
#' Type: \tab Offence type \cr
#' }
#'
#'covering the period from Apr 1995--Dec 2023.
#'
#' @source NSW Bureau of Crime Statistics and Research.
#' \url{https://bocsar.nsw.gov.au/}
#'
#'
#' @name nsw_offences
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#'
#' @examples
#' nsw_offences
#'
NULL
#' Average daily total pedestrian count in Melbourne
#'
#' Daily average total pedestrian count (across different sensors) from 2019-01-01 to
#' 2024-05-29.
#'
#' @source Melbourne Open Data Portal. \url{https://data.melbourne.vic.gov.au}
#'
#'
#' @name melb_walkers
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#'
#' @examples
#' melb_walkers |> autoplot(Count)
#'
NULL
#' Monthly short term (<1 year) visitor arrivals to Australia
#'
#' \code{aus_inbound} contains monthly data with one measured variable:
#' \tabular{ll}{
#' Count: \tab Number of individuals arriving in Australia \cr
#' }
#'
#' Each series is uniquely identified using two keys:
#' \tabular{ll}{
#' County: \tab Country of stay/residence \cr
#' Purpose: \tab Purpose of travel
#' }
#'
#'covering the period from Jan 2005--Feb 2020.
#'
#' @source Tourism Research Australia
#'
#'
#' @name aus_inbound
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#'
#' @examples
#' aus_inbound
#'
NULL
#' Monthly short term (<1 year) resident departures in Australia
#'
#' \code{aus_outbound} contains monthly data with one measured variable:
#' \tabular{ll}{
#' Count: \tab Number of individuals departing Australia \cr
#' }
#'
#' Each series is uniquely identified using two keys:
#' \tabular{ll}{
#' County: \tab Destination \cr
#' Purpose: \tab Purpose of travel
#' }
#'
#'covering the period from Jan 2005--Jun 2017.
#'
#' @source Tourism Research Australia
#'
#'
#' @name aus_outbound
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#'
#' @examples
#' aus_outbound
#'
NULL
#' Australian mortality data
#'
#' Weekly death counts and mortality rates in Australia.
#'
#' \code{aus_mortality} contains weekly data with two measured variables:
#' \tabular{ll}{
#' \code{Deaths}: \tab Death count\cr
#' \code{Mortality}: \tab Mortality rate
#' }
#' from 2015 week 01 to 2023 week 12 for five different age groups plus the
#' total, categorised by sex.
#'
#' Each series is uniquely identified using three keys:
#' \tabular{ll}{
#' \code{Sex}: \tab Sex of the individual: Male, Female, or Both\cr
#' \code{Age}: \tab Age group of the individual
#' }
#'
#' The mortality rate is defined as the number of deaths per thousand people in
#' Australia in each week.
#'
#' @source \url{https://mortality.org/Data/STMF} (Downloaded on 29 May 2024)
#'
#' @name aus_mortality
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#'
#' aus_mortality
#'
NULL
#' OTexts page views
#'
#' Daily page views on the OTexts website \url{https://OTexts.com/} as recorded by Google analytics.
#'
#' \code{otexts_views} contains daily data with two columns:
#' \tabular{ll}{
#' \code{Date}: \tab Date for which the page views are recorded\cr
#' \code{Pageviews}: \tab Page views on the OTexts website\cr
#' }
#'
#' @name otexts_views
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#'
#' otexts_views
#'
NULL
#' Australian births data
#'
#' Number of births in Australia.
#'
#' \code{aus_births} contains monthly data with one measured variable:
#' \tabular{ll}{
#' \code{Births}: \tab Number of births\cr
#' }
#' from January 1975 to December 2021 for the 6 states and 2 territories
#' of Australia, indexed by:
#' \tabular{ll}{
#' \code{Month}: \tab Year-month.\cr
#' }
#'#' Each series is uniquely identified using the key:
#' \tabular{ll}{
#' \code{State}: The state or territory.\cr
#' }
#'
#' @source Australian Bureau of Statistics. \url{https://www.abs.gov.au/statistics/people/population/births-australia/2022}
#'
#' @name aus_births
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#'
#' aus_births
#'
NULL
#' Australian migration data
#'
#' Net Overseas Migration (NOM) to Australia.
#'
#' \code{aus_migration} contains quarterly data with one measured variable:
#' \tabular{ll}{
#' \code{NOM}: \tab The net gain or loss of population through immigration
#' to Australia and emigration from Australia\cr
#' }
#' from 1981 Q2 to 2023 Q3 for the 6 states and 2 territories of Australia, indexed by:
#' \tabular{ll}{
#' \code{Quarter}: \tab Year-quarter.\cr
#' }
#'
#' NOM is based on an international traveller's duration of stay being in or out
#' of Australia for 12 months or more, over a 16 month period.
#'
#' Each series is uniquely identified using the key:
#' \tabular{ll}{
#' \code{State}: The state or territory.\cr
#' }
#'
#' @source Australian Bureau of Statistics. \url{https://www.abs.gov.au/statistics/people/population/national-state-and-territory-population/dec-2023}. Cat No. 310102.
#'
#' @name aus_migration
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#'
#' aus_migration
#'
NULL
#' Australian cigarette and tobacco expenditure
#'
#' The total household expenditure for cigarette and tobacco consumption (CTC)
#' in Australia.
#'
#' \code{aus_tobacco} contains quarterly data with one measured variable:
#' \tabular{ll}{
#' \code{Expenditure}: \tab The total expenditure\cr
#' }
#' from 1985 Q3 to 2023 Q4 for the 6 states and 2 territories of Australia,
#' indexed by:
#' \tabular{ll}{
#' \code{Quarter}: \tab Year-quarter.\cr
#' }
#'
#' The prices are represented as a chain volume measure (a representation of constant prices) in billions of dollars.
#'
#' Each series is uniquely identified using the key:
#' \tabular{ll}{
#' \code{State}: The state or territory.\cr
#' }
#'
#' @source Australian Bureau of Statistics. \url{https://www.abs.gov.au/statistics/economy/national-accounts/australian-national-accounts-national-income-expenditure-and-product/mar-2024}
#'
#' @name aus_tobacco
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#'
#' aus_tobacco |> autoplot(Expenditure) + scale_y_log10()
#'
NULL
#' New York childcare data
#'
#' The number of employees (in thousands) in child day care services in
#' New York City over the period the period from January 1990 to April 2024.
#'
#' \code{ny_childcare} contains monthly data with two columns:
#' \tabular{ll}{
#' \code{Month}: \tab Year-month\cr
#' \code{Count}: \tab Number of employees.\cr
#' }
#'
#' @source U.S. Bureau of Labor Statistics and Federal Reserve Bank of St. Louis,
#' All Employees: Education and Health Services: Child Care Services in New York City, NY
#' retrieved from FRED, Federal Reserve Bank of St. Louis;
#' \url{https://fred.stlouisfed.org/series/SMU36935616562440001}, 30 May 2024.
#' @name ny_childcare
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#'
#' ny_childcare
#'
NULL
#' Australian vehicle sales
#'
#' The number of new motor vehicles sold in Australia.
#'
#' \code{aus_vehicle_sales} contains monthly data with one measured variable:
#' \tabular{ll}{
#' \code{Count}: \tab The number of vehicles sold\cr
#' }
#' from January 1994 to December 2017 in Australia,
#' indexed by:
#' \tabular{ll}{
#' \code{Month}: \tab Year-month.\cr
#' }
#'
#' Each series is uniquely identified using the key:
#' \tabular{ll}{
#' \code{Type}: The type of the vehicle sold (Passenger, SUV, Other).\cr
#' }
#'
#' @source Australian Bureau of Statistics. \url{https://www.abs.gov.au/statistics/industry/tourism-and-transport/sales-new-motor-vehicles/dec-2017}. Cat No. 931401.
#'
#' @name aus_vehicle_sales
#' @docType data
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#'
#' aus_vehicle_sales
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.