Nothing
#' #' Compute the mean square distance between \eqn{X_k} and \eqn{Y_k}, i.e. \deqn{\frac{1}{n} \sum_{k=1}^n \|X_k-Y_k\|^2,}
#' #' where \eqn{\|\cdot\|} denotes a Euclidean norm and \eqn{n} is the number of observations.
#' #'
#' #' @title Compute a mean square error between X and Y
#' #' @param X first matrix to compare
#' #' @param Y second matrix to compare
#' #' @return Estimated mean square error
#' #' @export
#' #' @noRd
#' MSE = function(X,Y){
#' if (is.vector(X))
#' X = matrix(X)
#' if (is.vector(Y) && Y!= 0)
#' Y = matrix(Y)
#'
#' if (!is.matrix(X) || (!is.matrix(Y) && Y != 0))
#' stop("X and Y must be matrices, or Y=0")
#' if (any(dim(Y) != dim(X)) && Y != 0)
#' stop("Dimentions of X and Y must be equal")
#'
#' S = 0
#' for (i in 1:dim(X)[1]){
#' S = S + abs((Conj((Y-X)[i,])) %*%(Y-X)[i,])
#' }
#' S/dim(X)[1]
#' }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.