auc_ci: Bootstrap confidence intervals for AUC

Description Usage Arguments Value References Examples

View source: R/auc_boot.R

Description

A function to simulate bootstrap samples and calculate CIs for AUC and differences.

Usage

1
auc_ci(cpf, caf, group = NULL, nboot = 1000, alpha = 0.05, ...)

Arguments

cpf

A vector of cp frequencies.

caf

A vector of ca frequencies.

group

A vector indicating group membership. Will calculate AUC by group.

nboot

Number of bootstrap iterations. Defaults to 1,000.

alpha

Alpha level for the CIs. Defaults to 0.05.

...

Additional arguments in auc_boot. Will allow users to adjust ca id rates in each simulation.

Value

A data frame of CIs for each group and group differences.

References

Yueran Yang & Andrew Smith. (2020). "fullROC: An R package for generating and analyzing eyewitness-lineup ROC curves" doi: 10.13140/RG.2.2.20415.94885/1

Andrew Smith, Yueran Yang, & Gary Wells. (2020). "Distinguishing between investigator discriminability and eyewitness discriminability: A method for creating full receiver operating characteristic curves of lineup identification performance". Perspectives on Psychological Science, 15(3), 589-607. doi: 10.1177/1745691620902426

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
cpf1 <- c(100, 90, 80, 20, 10, 5)
caf1 <- c(6, 7, 15, 50, 75, 120)
auc_ci(cpf1, caf1, nboot = 50)

cpf2 <- c(90, 40, 20)
caf2 <- c(10, 70, 80)
auc_ci(cpf2, caf2, nboot = 100)

## compare two groups
cpf <- c(cpf1, cpf2)
caf <- c(caf1, caf2)
group <- rep(letters[1:2], times = c(length(cpf1), length(cpf2) ) )
auc_ci(cpf, caf, group = group)

fullROC documentation built on Jan. 16, 2021, 5:40 p.m.

Related to auc_ci in fullROC...