inst/doc/model_walkthrough.R

## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup--------------------------------------------------------------------
library(funkycells)

## ----define_functions, echo=FALSE---------------------------------------------
full_run <- FALSE # This runs only computations that are feasibly quick
paper_run <- FALSE # This creates and saves figures as in paper
save_path <- tempdir() # Save to temp directory as desired

## ----build_data---------------------------------------------------------------
set.seed(123)
cell_data <- simulatePP(
  agentVarData =
    data.frame(
      "outcome" = c(0, 1),
      "A" = c(0, 0),
      "B" = c(1 / 100, 1 / 300)
    ),
  agentKappaData =
    data.frame(
      "agent" = c("A", "B"),
      "clusterAgent" = c(NA, "A"),
      "kappa" = c(20, 5)
    ),
  unitsPerOutcome = 15,
  replicatesPerUnit = 2,
  silent = FALSE
)

## ----show_spatial_images------------------------------------------------------
plotPP(cell_data[cell_data$replicate == 1, c("x", "y", "type")],
  ptSize = 2, colorGuide = ggplot2::guide_legend(title = "Cells"),
  xlim = c(0, 1), ylim = c(0, 1)
)

plotPP(cell_data[cell_data$replicate == 21, c("x", "y", "type")],
  ptSize = 2, colorGuide = ggplot2::guide_legend(title = "Cells"),
  xlim = c(0, 1), ylim = c(0, 1)
)

## ----paper_spatial_images, echo=FALSE, eval=paper_run-------------------------
#  img1 <- plotPP(
#    data = cell_data[cell_data$replicate == 1, c("x", "y", "type")],
#    ptSize = 3, dropAxes = T, colorGuide = "none"
#  )
#  png(paste0(save_path,"/paper/diagram_pp1.png"), width = 800, height = 800)
#  print(img1)
#  dev.off()
#  
#  img21 <- plotPP(
#    data = cell_data[cell_data$replicate == 21, c("x", "y", "type")],
#    ptSize = 3, dropAxes = T, colorGuide = "none"
#  )
#  png(paste0(save_path,"/paper/diagram_pp21.png"), width = 800, height = 800)
#  print(img21)
#  dev.off()
#  
#  img41 <- plotPP(
#    data = cell_data[cell_data$replicate == 41, c("x", "y", "type")],
#    ptSize = 3, dropAxes = T, colorGuide = "none"
#  )
#  png(paste0(save_path,"/paper/diagram_pp41.png"), width = 800, height = 800)
#  print(img41)
#  dev.off()

## ----show_K_functions---------------------------------------------------------
AB_ex <- getKFunction(
  cell_data[
    cell_data$replicate == 1,
    !(colnames(cell_data) %in% ("outcome"))
  ],
  agents = c("A", "B"), unit = "unit", replicate = "replicate",
  rCheckVals = seq(0, 0.25, 0.01), xRange = c(0, 1), yRange = c(0, 1)
)

ggplot2::ggplot() +
  ggplot2::geom_line(ggplot2::aes(x = r, y = K1), data = AB_ex, linewidth = 2) +
  ggplot2::theme_bw() +
  ggplot2::theme(
    axis.title = ggplot2::element_blank(),
    axis.text = ggplot2::element_blank()
  )

## ----paper_K_functions, echo=FALSE, eval=paper_run----------------------------
#  AA_im1 <- getKFunction(
#    cell_data[
#      cell_data$replicate == 1,
#      !(colnames(cell_data) %in% ("outcome"))
#    ],
#    agents = c("A", "A"), unit = "unit", replicate = "replicate",
#    rCheckVals = seq(0, 0.25, 0.01), xRange = c(0, 1), yRange = c(0, 1)
#  )
#  AB_im1 <- getKFunction(
#    cell_data[
#      cell_data$replicate == 1,
#      !(colnames(cell_data) %in% ("outcome"))
#    ],
#    agents = c("A", "B"), unit = "unit", replicate = "replicate",
#    rCheckVals = seq(0, 0.25, 0.01), xRange = c(0, 1), yRange = c(0, 1)
#  )
#  
#  AAfig_im1 <- ggplot2::ggplot() +
#    ggplot2::geom_line(ggplot2::aes(x = r, y = K1), data = AA_im1, linewidth = 3) +
#    ggplot2::theme_bw() +
#    ggplot2::theme(
#      axis.title = ggplot2::element_blank(),
#      axis.text = ggplot2::element_blank()
#    )
#  png(paste0(save_path,"/paper/diagram_K_AA_i1.png"), width = 800, height = 800)
#  print(AAfig_im1)
#  dev.off()
#  
#  ABfig_im1 <- ggplot2::ggplot() +
#    ggplot2::geom_line(ggplot2::aes(x = r, y = K1), data = AB_im1, linewidth = 3) +
#    ggplot2::theme_bw() +
#    ggplot2::theme(
#      axis.title = ggplot2::element_blank(),
#      axis.text = ggplot2::element_blank()
#    )
#  png(paste0(save_path,"/paper/diagram_K_AB_i1.png"), width = 800, height = 800)
#  print(ABfig_im1)
#  dev.off()

## ----pca----------------------------------------------------------------------
pcaData <- getKsPCAData(
  data = cell_data, replicate = "replicate",
  agents_df = data.frame(c("A", "A", "B"), c("A", "B", "B")),
  xRange = c(0, 1), yRange = c(0, 1),
  nPCs = 3, silent = T
)

## ----simulate_meta------------------------------------------------------------
set.seed(123)
pcaMeta <- simulateMeta(pcaData,
  metaInfo = data.frame(
    "var" = c("sex", "age"),
    "rdist" = c("rbinom", "rnorm"),
    "outcome_0" = c("0.5", "25"),
    "outcome_1" = c("0.5", "26")
  )
)

## ----evaluate_model, eval=full_run | full_run---------------------------------
#  set.seed(123)
#  model_fm <- funkyModel(
#    data = pcaMeta,
#    outcome = "outcome",
#    unit = "unit",
#    metaNames = c("sex", "age")
#  )

## ----show_variable_importance, eval=full_run----------------------------------
#  model_fm$viPlot

## ----paper_variable_importance, echo=FALSE, eval=paper_run--------------------
#  # Get Vars
#  viData <- model_fm$VariableImportance
#  accData <- model_fm$AccuracyEstimate
#  NoiseCutoff <- model_fm$NoiseCutoff
#  InterpolationCutoff <- model_fm$InterpolationCutoff
#  
#  # Plot
#  maxVal <- max(InterpolationCutoff, NoiseCutoff, viData$est)
#  plot_vi_full <- ggplot2::ggplot(
#    data = viData,
#    mapping = ggplot2::aes(
#      x = factor(stats::reorder(var, est)),
#      y = ifelse(est / maxVal > 1, 1,
#        ifelse(est / maxVal < 0, 0,
#          est / maxVal
#        )
#      ),
#      group = 1
#    )
#  ) +
#    ggplot2::geom_errorbar(
#      ggplot2::aes(
#        ymin = ifelse((est - sd) / maxVal < 0, 0, (est - sd) / maxVal),
#        ymax = ifelse((est + sd) / maxVal > 1, 1, (est + sd) / maxVal)
#      ),
#      color = "black", width = 0.2
#    ) +
#    ggplot2::geom_point(color = "black", size = 3) +
#    ggplot2::geom_hline(
#      ggplot2::aes(yintercept = max(0, min(1, NoiseCutoff / maxVal))),
#      color = "red", linetype = "dotted", linewidth = 2
#    ) +
#    ggplot2::coord_flip(ylim = c(0, 1)) +
#    ggplot2::xlab(NULL) +
#    ggplot2::ylim(c(0, 1)) +
#    ggplot2::ylab(NULL) +
#    ggplot2::theme_bw() +
#    ggplot2::theme(
#      axis.text = ggplot2::element_text(size = 18),
#      axis.text.x = ggplot2::element_blank(),
#      axis.text.y = ggplot2::element_blank(),
#      axis.ticks.y = ggplot2::element_blank(),
#      panel.grid.major.y = ggplot2::element_blank(),
#      axis.title = ggplot2::element_text(size = 20)
#    ) +
#    ggplot2::geom_line(ggplot2::aes(
#      x = ordered(viData[order(-est), "var"]),
#      y = InterpolationCutoff / maxVal
#    ), color = "orange", linetype = "dashed", linewidth = 2) +
#    ggplot2::ylab(paste0(
#      "OOB (",
#      specify_decimal(accData$OOB, 2),
#      "), Guess (",
#      specify_decimal(accData$guess, 2),
#      "), Bias (",
#      specify_decimal(accData$bias, 2), ")"
#    ))
#  
#  png(paste0(save_path,"/paper/diagram_variableimportance.png"))
#  print(plot_vi_full)
#  dev.off()
#  
#  
#  # Plot
#  maxVal <- max(InterpolationCutoff, NoiseCutoff, viData$est)
#  plot_vi_details <- ggplot2::ggplot(
#    data = viData,
#    mapping = ggplot2::aes(
#      x = factor(stats::reorder(var, est)),
#      y = ifelse(est / maxVal > 1, 1,
#        ifelse(est / maxVal < 0, 0,
#          est / maxVal
#        )
#      ),
#      group = 1
#    )
#  ) +
#    ggplot2::geom_errorbar(
#      ggplot2::aes(
#        ymin = ifelse((est - sd) / maxVal < 0, 0, (est - sd) / maxVal),
#        ymax = ifelse((est + sd) / maxVal > 1, 1, (est + sd) / maxVal)
#      ),
#      color = "black", width = 0.2
#    ) +
#    ggplot2::geom_point(color = "black", size = 3) +
#    ggplot2::geom_hline(
#      ggplot2::aes(yintercept = max(0, min(1, NoiseCutoff / maxVal))),
#      color = "red", linetype = "dotted", linewidth = 2
#    ) +
#    ggplot2::coord_flip(ylim = c(0, 1)) +
#    ggplot2::xlab(NULL) +
#    ggplot2::ylim(c(0, 1)) +
#    ggplot2::ylab(NULL) +
#    ggplot2::theme_bw() +
#    ggplot2::theme(
#      axis.text = ggplot2::element_text(size = 18),
#      axis.text.x = ggplot2::element_blank(),
#      # axis.text.y = ggplot2::element_blank(),
#      axis.ticks.y = ggplot2::element_blank(),
#      panel.grid.major.y = ggplot2::element_blank(),
#      axis.title = ggplot2::element_text(size = 20)
#    ) +
#    ggplot2::geom_line(ggplot2::aes(
#      x = ordered(viData[order(-est), "var"]),
#      y = InterpolationCutoff / maxVal
#    ), color = "orange", linetype = "dashed", linewidth = 2) +
#    ggplot2::ylab(paste0(
#      "OOB (",
#      specify_decimal(accData$OOB, 2),
#      "), Guess (",
#      specify_decimal(accData$guess, 2),
#      "), Bias (",
#      specify_decimal(accData$bias, 2), ")"
#    ))
#  
#  png(paste0(save_path,"/paper/diagram_variableimportance_names.png"))
#  print(plot_vi_details)
#  dev.off()

Try the funkycells package in your browser

Any scripts or data that you put into this service are public.

funkycells documentation built on Aug. 9, 2023, 5:10 p.m.