plan | R Documentation |
This function allows the user to plan the future, more specifically,
it specifies how future()
:s are resolved,
e.g. sequentially or in parallel.
plan(
strategy = NULL,
...,
substitute = TRUE,
.skip = FALSE,
.call = TRUE,
.cleanup = TRUE,
.init = TRUE
)
strategy |
The evaluation function (or name of it) to use
for resolving a future. If |
... |
Additional arguments overriding the default arguments
of the evaluation function. Which additional arguments are supported
depends on what evaluation function is used, e.g. several support
argument |
substitute |
If |
.skip |
(internal) If |
.call |
(internal) Used for recording the call to this function. |
.cleanup |
(internal) Used to stop implicitly started clusters. |
.init |
(internal) Used to initiate workers. |
The default strategy is sequential
, but the default can be
configured by option future.plan and, if that is not set,
system environment variable R_FUTURE_PLAN.
To reset the strategy back to the default, use plan("default")
.
If a new strategy is chosen, then the previous one is returned (invisible), otherwise the current one is returned (visibly).
The future package provides the following built-in backends:
sequential
:Resolves futures sequentially in the current R process, e.g.
plan(sequential)
.
multisession
:Resolves futures asynchronously (in parallel) in separate
R sessions running in the background on the same machine, e.g.
plan(multisession)
and plan(multisession, workers = 2)
.
multicore
:Resolves futures asynchronously (in parallel) in separate
forked R processes running in the background on
the same machine, e.g.
plan(multicore)
and plan(multicore, workers = 2)
.
This backend is not supported on Windows.
cluster
:Resolves futures asynchronously (in parallel) in separate
R sessions running typically on one or more machines, e.g.
plan(cluster)
, plan(cluster, workers = 2)
, and
plan(cluster, workers = c("n1", "n1", "n2", "server.remote.org"))
.
Other package provide additional evaluation strategies.
For example, the future.callr package implements an alternative
to the multisession
backend on top of the callr package, e.g.
plan(future.callr::callr, workers = 2)
.
Another example is the future.batchtools package, which implements,
on top of the batchtools package, e.g.
plan(future.batchtools::batchtools_slurm)
.
These types of futures are resolved via job schedulers, which typically
are available on high-performance compute (HPC) clusters, e.g. LSF,
Slurm, TORQUE/PBS, Sun Grid Engine, and OpenLava.
To "close" any background workers (e.g. multisession
), change
the plan to something different; plan(sequential)
is recommended
for this.
Please refrain from modifying the future strategy inside your packages /
functions, i.e. do not call plan()
in your code. Instead, leave
the control on what backend to use to the end user. This idea is part of
the core philosophy of the future framework—as a developer you can never
know what future backends the user have access to. Moreover, by not making
any assumptions about what backends are available, your code will also work
automatically with any new backends developed after you wrote your code.
If you think it is necessary to modify the future strategy within a function, then make sure to undo the changes when exiting the function. This can be done using:
oplan <- plan(new_set_of_strategies) on.exit(plan(oplan), add = TRUE) [...]
This is important because the end-user might have already set the future strategy elsewhere for other purposes and will most likely not known that calling your function will break their setup. Remember, your package and its functions might be used in a greater context where multiple packages and functions are involved and those might also rely on the future framework, so it is important to avoid stepping on others' toes.
When writing scripts or vignettes that use futures, try to place any
call to plan()
as far up (i.e. as early on) in the code as possible.
This will help users to quickly identify where the future plan is set up
and allow them to modify it to their computational resources.
Even better is to leave it to the user to set the plan()
prior to
source()
:ing the script or running the vignette.
If a ‘.future.R’ exists in the current directory and / or in
the user's home directory, it is sourced when the future package is
loaded. Because of this, the ‘.future.R’ file provides a
convenient place for users to set the plan()
.
This behavior can be controlled via an R option—see
future options for more details.
a <- b <- c <- NA_real_
# An sequential future
plan(sequential)
f <- future({
a <- 7
b <- 3
c <- 2
a * b * c
})
y <- value(f)
print(y)
str(list(a = a, b = b, c = c)) ## All NAs
# A sequential future with lazy evaluation
plan(sequential)
f <- future({
a <- 7
b <- 3
c <- 2
a * b * c
}, lazy = TRUE)
y <- value(f)
print(y)
str(list(a = a, b = b, c = c)) ## All NAs
# A multicore future (specified as a string)
plan("multicore")
f <- future({
a <- 7
b <- 3
c <- 2
a * b * c
})
y <- value(f)
print(y)
str(list(a = a, b = b, c = c)) ## All NAs
## Multisession futures gives an error on R CMD check on
## Windows (but not Linux or macOS) for unknown reasons.
## The same code works in package tests.
# A multisession future (specified via a string variable)
plan("future::multisession")
f <- future({
a <- 7
b <- 3
c <- 2
a * b * c
})
y <- value(f)
print(y)
str(list(a = a, b = b, c = c)) ## All NAs
## Explicitly specifying number of workers
## (default is parallelly::availableCores())
plan(multicore, workers = 2)
message("Number of parallel workers: ", nbrOfWorkers())
## Explicitly close multisession workers by switching plan
plan(sequential)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.