gamlss.nn | R Documentation |
This is support for the smoother function nn() an interface for Brian Reply's nnet()
function.
It is not intended to be called directly by users.
gamlss.nn(x, y, w, xeval = NULL, ...)
x |
the explanatory variables |
y |
iterative y variable |
w |
iterative weights |
xeval |
if xeval=TRUE then predicion is used |
... |
for extra arguments |
Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk, Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby R.A., Stasinopoulos D. M., Heller G., and De Bastiani F., (2019) Distributions for Modeling Location, Scale and Shape: Using GAMLSS in R, Chapman and Hall/CRC.
Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23(7), 1–46, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
fk
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.