R/RcppExports.R

Defines functions gdDataSourceHasActiveStringColumn gdGenerativeModelSetDropout gdGenerativeModelGetDropout gdGenerativeModelSetLearningRate gdGenerativeModelGetLearningRate gdGenerativeModelSetNumberOfHiddenLayerUnits gdGenerativeModelGetNumberOfHiddenLayerUnits gdGenerativeModelSetNumberOfInitializationIterations gdGenerativeModelGetNumberOfInitializationIterations gdGenerativeModelSetNumberOfTrainingIterations gdGenerativeModelGetNumberOfTrainingIterations gdComplete gdKNearestNeighbors gdBuildFileName gdCalculateDensityValueQuantile gdCalculateDensityValue gdIntCalculateDensityValues gdResetDensitiyValues gdGetMin gdGetMax gdGetRow gdGetNumberVectorIndexNames gdGetGenerativeDataDimension gdGetColumnNames gdGetNumberOfRows gdAddValueRows gdGetDataSourceDimension gdGenerativeDataGetDenormalizedDataRandomWithDensities gdGenerativeDataGetDenormalizedDataRandom gdDataSourceGetDataRandomPercent gdDataSourceGetNormalizedDataRandomReference gdDataSourceGetNormalizedDataRandom gdDataSourceGetDataRandom gdCreateDataSourceFromGenerativeModel gdCreateGenerativeData gdWriteSubset gdGenerativeDataWrite gdGenerativeDataRead gdDataSourceRead gdReadGenerativeModel gdWriteWithReadingTrainedModel gdCreateGenerativeModel gdGetFileName gdGetMaxSize gdGetBatchSize gdGetGenerativeDataFileName gdGetDataSourceFileName gdReset dsGetNormalized dsGetRow dsGetNumberOfRows dsGetInactiveColumnNames dsGetActiveColumnNames dsActivateColumns dsDeactivateColumns dsAddValueRow dsCreate dsRead dsWrite

Documented in dsActivateColumns dsDeactivateColumns dsGetActiveColumnNames dsGetInactiveColumnNames dsGetNumberOfRows dsGetRow dsRead dsWrite gdCalculateDensityValue gdCalculateDensityValueQuantile gdComplete gdGetNumberOfRows gdGetRow gdKNearestNeighbors gdWriteSubset

# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

#' Write a data source to file
#'
#' Write a data source including settings of active columns to a file in binary format.
#' This file will be used as input in functions for generation of generative data.\cr
#'
#' @param fileName Name of data source file
#'
#' @return None
#' @export
#'
#' @examples
#' \dontrun{
#' dsCreateWithDataFrame(iris)
#' dsDeactivateColumns(c(5))
#' dsWrite("ds.bin")}
dsWrite <- function(fileName) {
    invisible(.Call('_ganGenerativeData_dsWrite', PACKAGE = 'ganGenerativeData', fileName))
}

#' Read a data source from file
#'
#' Read a data source from a file in binary format
#'
#' @param fileName Name of data source file
#'
#' @return None
#' @export
#'
#' @examples
#' \dontrun{
#' dsCreateWithDataFrame(iris)
#' dsDeactivateColumns(c(5))
#' dsWrite("ds.bin")
#' dsRead("ds.bin")}
dsRead <- function(fileName) {
    invisible(.Call('_ganGenerativeData_dsRead', PACKAGE = 'ganGenerativeData', fileName))
}

dsCreate <- function(columnTypes, columnNames) {
    invisible(.Call('_ganGenerativeData_dsCreate', PACKAGE = 'ganGenerativeData', columnTypes, columnNames))
}

dsAddValueRow <- function(valueVector) {
    invisible(.Call('_ganGenerativeData_dsAddValueRow', PACKAGE = 'ganGenerativeData', valueVector))
}

#' Deactivate columns
#'
#' Deactivate columns in a data source in order to exclude them from training
#' of generative models. Note that the training function in the package
#' supports only columns of type R-class numeric, R-type double. All columns of
#' other type have to be deactivated. The training function in the software
#' service for accelerated training of generative models supports columns of
#' any type.
#'
#' @param columnVector Vector of column indices
#'
#' @return None
#' @export
#'
#' @examples
#' \donttest{
#' dsCreateWithDataFrame(iris)
#' dsDeactivateColumns(c(5))
#' dsGetInactiveColumnNames()}
dsDeactivateColumns <- function(columnVector) {
    invisible(.Call('_ganGenerativeData_dsDeactivateColumns', PACKAGE = 'ganGenerativeData', columnVector))
}

#' Activate columns
#'
#' Activate columns in a data source in order to include them in training of generative models. By default columns are active.
#'
#' @param columnVector Vector of column indices
#'
#' @return None
#' @export
#'
#' @examples
#' \donttest{
#' dsCreateWithDataFrame(iris)
#' dsGetActiveColumnNames()
#' dsDeactivateColumns(c(5))
#' dsGetActiveColumnNames()
#' dsActivateColumns(c(5))
#' dsGetActiveColumnNames()}
dsActivateColumns <- function(columnVector) {
    invisible(.Call('_ganGenerativeData_dsActivateColumns', PACKAGE = 'ganGenerativeData', columnVector))
}

#' Get active column names
#'
#' Get active column names of a data source
#'
#' @return Vector of names of active columns
#' @export
#'
#' @examples
#' \donttest{
#' dsCreateWithDataFrame(iris)
#' dsDeactivateColumns(c(5))
#' dsGetActiveColumnNames()}
dsGetActiveColumnNames <- function() {
    .Call('_ganGenerativeData_dsGetActiveColumnNames', PACKAGE = 'ganGenerativeData')
}

#' Get inactive column names
#'
#' Get inactive column names of a data source
#'
#' 
#'
#' @return Vector of names of inactive columns
#' @export
#'
#' @examples
#' \donttest{
#' dsCreateWithDataFrame(iris)
#' dsDeactivateColumns(c(5))
#' dsGetInactiveColumnNames()}
dsGetInactiveColumnNames <- function() {
    .Call('_ganGenerativeData_dsGetInactiveColumnNames', PACKAGE = 'ganGenerativeData')
}

#' Get number of rows
#'
#' Get number of rows in a data source
#'
#' 
#'
#' @return Number of rows
#' @export
#'
#' @examples
#' \donttest{
#' dsCreateWithDataFrame(iris)
#' dsGetNumberOfRows()}
dsGetNumberOfRows <- function() {
    .Call('_ganGenerativeData_dsGetNumberOfRows', PACKAGE = 'ganGenerativeData')
}

#' Get a row in a data source
#'
#' Get a row in a data source for a row index.
#'
#' @param index Index of row
#'
#' @return List containing row in data source
#' @export
#'
#' @examples
#' \donttest{
#' dsCreateWithDataFrame(iris)
#' dsGetRow(1)}
dsGetRow <- function(index) {
    .Call('_ganGenerativeData_dsGetRow', PACKAGE = 'ganGenerativeData', index)
}

dsGetNormalized <- function() {
    .Call('_ganGenerativeData_dsGetNormalized', PACKAGE = 'ganGenerativeData')
}

gdReset <- function() {
    invisible(.Call('_ganGenerativeData_gdReset', PACKAGE = 'ganGenerativeData'))
}

gdGetDataSourceFileName <- function() {
    .Call('_ganGenerativeData_gdGetDataSourceFileName', PACKAGE = 'ganGenerativeData')
}

gdGetGenerativeDataFileName <- function() {
    .Call('_ganGenerativeData_gdGetGenerativeDataFileName', PACKAGE = 'ganGenerativeData')
}

gdGetBatchSize <- function() {
    .Call('_ganGenerativeData_gdGetBatchSize', PACKAGE = 'ganGenerativeData')
}

gdGetMaxSize <- function() {
    .Call('_ganGenerativeData_gdGetMaxSize', PACKAGE = 'ganGenerativeData')
}

gdGetFileName <- function(fileName) {
    .Call('_ganGenerativeData_gdGetFileName', PACKAGE = 'ganGenerativeData', fileName)
}

gdCreateGenerativeModel <- function() {
    invisible(.Call('_ganGenerativeData_gdCreateGenerativeModel', PACKAGE = 'ganGenerativeData'))
}

gdWriteWithReadingTrainedModel <- function(outFileName) {
    invisible(.Call('_ganGenerativeData_gdWriteWithReadingTrainedModel', PACKAGE = 'ganGenerativeData', outFileName))
}

gdReadGenerativeModel <- function(inFileName) {
    .Call('_ganGenerativeData_gdReadGenerativeModel', PACKAGE = 'ganGenerativeData', inFileName)
}

gdDataSourceRead <- function(inFileName) {
    invisible(.Call('_ganGenerativeData_gdDataSourceRead', PACKAGE = 'ganGenerativeData', inFileName))
}

gdGenerativeDataRead <- function(inFileName) {
    .Call('_ganGenerativeData_gdGenerativeDataRead', PACKAGE = 'ganGenerativeData', inFileName)
}

gdGenerativeDataWrite <- function(outFileName) {
    invisible(.Call('_ganGenerativeData_gdGenerativeDataWrite', PACKAGE = 'ganGenerativeData', outFileName))
}

#' Write subset of generative data
#'
#' Write subset of randomly selected rows of generative data
#'
#' @param fileName Name of subset generative data file
#' @param percent Percent of randomly selected rows
#'
#' @return None
#' @export
#'
#' @examples
#' \dontrun{
#' gdRead("gd.bin")
#' gdWriteSubset("gds.bin", 50)}
gdWriteSubset <- function(fileName, percent) {
    invisible(.Call('_ganGenerativeData_gdWriteSubset', PACKAGE = 'ganGenerativeData', fileName, percent))
}

gdCreateGenerativeData <- function() {
    invisible(.Call('_ganGenerativeData_gdCreateGenerativeData', PACKAGE = 'ganGenerativeData'))
}

gdCreateDataSourceFromGenerativeModel <- function() {
    invisible(.Call('_ganGenerativeData_gdCreateDataSourceFromGenerativeModel', PACKAGE = 'ganGenerativeData'))
}

gdDataSourceGetDataRandom <- function(rowCount) {
    .Call('_ganGenerativeData_gdDataSourceGetDataRandom', PACKAGE = 'ganGenerativeData', rowCount)
}

gdDataSourceGetNormalizedDataRandom <- function(rowCount) {
    .Call('_ganGenerativeData_gdDataSourceGetNormalizedDataRandom', PACKAGE = 'ganGenerativeData', rowCount)
}

gdDataSourceGetNormalizedDataRandomReference <- function(rowCount) {
    .Call('_ganGenerativeData_gdDataSourceGetNormalizedDataRandomReference', PACKAGE = 'ganGenerativeData', rowCount)
}

gdDataSourceGetDataRandomPercent <- function(percent) {
    .Call('_ganGenerativeData_gdDataSourceGetDataRandomPercent', PACKAGE = 'ganGenerativeData', percent)
}

gdGenerativeDataGetDenormalizedDataRandom <- function(percent) {
    .Call('_ganGenerativeData_gdGenerativeDataGetDenormalizedDataRandom', PACKAGE = 'ganGenerativeData', percent)
}

gdGenerativeDataGetDenormalizedDataRandomWithDensities <- function(percent) {
    .Call('_ganGenerativeData_gdGenerativeDataGetDenormalizedDataRandomWithDensities', PACKAGE = 'ganGenerativeData', percent)
}

gdGetDataSourceDimension <- function() {
    .Call('_ganGenerativeData_gdGetDataSourceDimension', PACKAGE = 'ganGenerativeData')
}

gdAddValueRows <- function(valueRows) {
    invisible(.Call('_ganGenerativeData_gdAddValueRows', PACKAGE = 'ganGenerativeData', valueRows))
}

#' Get number of rows
#'
#' Get number of rows in generative data
#'
#' @return Number of rows
#' @export
#'
#' @examples
#' \dontrun{
#' gdRead("gd.bin")
#' gdGetNumberOfRows()}
gdGetNumberOfRows <- function() {
    .Call('_ganGenerativeData_gdGetNumberOfRows', PACKAGE = 'ganGenerativeData')
}

gdGetColumnNames <- function(indexVector) {
    .Call('_ganGenerativeData_gdGetColumnNames', PACKAGE = 'ganGenerativeData', indexVector)
}

gdGetGenerativeDataDimension <- function() {
    .Call('_ganGenerativeData_gdGetGenerativeDataDimension', PACKAGE = 'ganGenerativeData')
}

gdGetNumberVectorIndexNames <- function(numberVectorIndices) {
    .Call('_ganGenerativeData_gdGetNumberVectorIndexNames', PACKAGE = 'ganGenerativeData', numberVectorIndices)
}

#' Get a row in generative data
#'
#' Get a row in generative data for a row index
#'
#' @param index Index of row
#'
#' @return List containing row in generative data
#' @export
#'
#' @examples
#' \dontrun{
#' gdRead("gd.bin")
#' gdGetRow(1000)}
gdGetRow <- function(index) {
    .Call('_ganGenerativeData_gdGetRow', PACKAGE = 'ganGenerativeData', index)
}

gdGetMax <- function(i) {
    .Call('_ganGenerativeData_gdGetMax', PACKAGE = 'ganGenerativeData', i)
}

gdGetMin <- function(i) {
    .Call('_ganGenerativeData_gdGetMin', PACKAGE = 'ganGenerativeData', i)
}

gdResetDensitiyValues <- function() {
    invisible(.Call('_ganGenerativeData_gdResetDensitiyValues', PACKAGE = 'ganGenerativeData'))
}

gdIntCalculateDensityValues <- function() {
    invisible(.Call('_ganGenerativeData_gdIntCalculateDensityValues', PACKAGE = 'ganGenerativeData'))
}

#' Calculate density value for a data record
#' 
#' Calculate density value for a data record.
#' By default for the calculation a linear search is performed on generative data.
#' When a search tree is used search is performed on a tree for generative data
#' which is built once in the first function call.
#'
#' @param dataRecord List containing a data record
#' @param useSearchTree Boolean value indicating if a search tree should be used.
#'
#' @return Normalized density value number
#' @export
#'
#' @examples
#' \dontrun{
#' gdRead("gd.bin")
#' gdCalculateDensityValue(list(6.1, 2.6, 5.6, 1.4))}
gdCalculateDensityValue <- function(dataRecord, useSearchTree = FALSE) {
    .Call('_ganGenerativeData_gdCalculateDensityValue', PACKAGE = 'ganGenerativeData', dataRecord, useSearchTree)
}

#' Calculate density value quantile
#' 
#' Calculate density value quantile for a percent value. 
#'
#' @param percent Percent value
#'
#' @return Normalized density value quantile number
#' @export
#'
#' @examples
#' \dontrun{
#' gdRead("gd.bin")
#' gdCalculateDensityValueQuantile(50)}
gdCalculateDensityValueQuantile <- function(percent) {
    .Call('_ganGenerativeData_gdCalculateDensityValueQuantile', PACKAGE = 'ganGenerativeData', percent)
}

gdBuildFileName <- function(fileName, niveau) {
    .Call('_ganGenerativeData_gdBuildFileName', PACKAGE = 'ganGenerativeData', fileName, niveau)
}

#' Search for k nearest neighbors
#' 
#' Search for k nearest neighbors in generative data for a data record.
#' When the data record contains NA values only the non-NA values are considered in search.
#' By default a linear search is performed. When a search tree is used search is performed on a tree
#' which is built once in the first function call.
#' Building a tree is also triggered when NA values in data records change in subsequent function calls. 
#' 
#' @param dataRecord List containing a data record
#' @param k Number of nearest neighbors
#' @param useSearchTree Boolean value indicating if a search tree should be used. 
#'
#' @return A list of rows in generative data
#' @export
#'
#' @examples
#' \dontrun{
#' gdRead("gd.bin")
#' gdKNearestNeighbors(list(5.1, 3.5, 1.4, 0.2), 3)}
gdKNearestNeighbors <- function(dataRecord, k = 1L, useSearchTree = FALSE) {
    .Call('_ganGenerativeData_gdKNearestNeighbors', PACKAGE = 'ganGenerativeData', dataRecord, k, useSearchTree)
}

#' Complete incomplete data record
#' 
#' Search for first nearest neighbor in generative data for incomplete data record containing NA values.
#' Found row in generative data is then used to replace NA values in inccomplete data record. This function calls
#' gdKNearestNeighbors() with parameter k equal to 1.
#' 
#' @param dataRecord List containing incomplete data record
#' @param useSearchTree Boolean value indicating if a search tree should be used.
#'
#' @return List containing completed data record
#' @export
#'
#' @examples
#' \dontrun{
#' gdRead("gd.bin")
#' gdComplete(list(5.1, 3.5, 1.4, NA))}
gdComplete <- function(dataRecord, useSearchTree = FALSE) {
    .Call('_ganGenerativeData_gdComplete', PACKAGE = 'ganGenerativeData', dataRecord, useSearchTree)
}

gdGenerativeModelGetNumberOfTrainingIterations <- function() {
    .Call('_ganGenerativeData_gdGenerativeModelGetNumberOfTrainingIterations', PACKAGE = 'ganGenerativeData')
}

gdGenerativeModelSetNumberOfTrainingIterations <- function(numberOfTrainingIterations) {
    invisible(.Call('_ganGenerativeData_gdGenerativeModelSetNumberOfTrainingIterations', PACKAGE = 'ganGenerativeData', numberOfTrainingIterations))
}

gdGenerativeModelGetNumberOfInitializationIterations <- function() {
    .Call('_ganGenerativeData_gdGenerativeModelGetNumberOfInitializationIterations', PACKAGE = 'ganGenerativeData')
}

gdGenerativeModelSetNumberOfInitializationIterations <- function(numberOfInitializationIterations) {
    invisible(.Call('_ganGenerativeData_gdGenerativeModelSetNumberOfInitializationIterations', PACKAGE = 'ganGenerativeData', numberOfInitializationIterations))
}

gdGenerativeModelGetNumberOfHiddenLayerUnits <- function() {
    .Call('_ganGenerativeData_gdGenerativeModelGetNumberOfHiddenLayerUnits', PACKAGE = 'ganGenerativeData')
}

gdGenerativeModelSetNumberOfHiddenLayerUnits <- function(numberOfHiddenLayerUnits) {
    invisible(.Call('_ganGenerativeData_gdGenerativeModelSetNumberOfHiddenLayerUnits', PACKAGE = 'ganGenerativeData', numberOfHiddenLayerUnits))
}

gdGenerativeModelGetLearningRate <- function() {
    .Call('_ganGenerativeData_gdGenerativeModelGetLearningRate', PACKAGE = 'ganGenerativeData')
}

gdGenerativeModelSetLearningRate <- function(learningRate) {
    invisible(.Call('_ganGenerativeData_gdGenerativeModelSetLearningRate', PACKAGE = 'ganGenerativeData', learningRate))
}

gdGenerativeModelGetDropout <- function() {
    .Call('_ganGenerativeData_gdGenerativeModelGetDropout', PACKAGE = 'ganGenerativeData')
}

gdGenerativeModelSetDropout <- function(dropout) {
    invisible(.Call('_ganGenerativeData_gdGenerativeModelSetDropout', PACKAGE = 'ganGenerativeData', dropout))
}

gdDataSourceHasActiveStringColumn <- function() {
    .Call('_ganGenerativeData_gdDataSourceHasActiveStringColumn', PACKAGE = 'ganGenerativeData')
}

Try the ganGenerativeData package in your browser

Any scripts or data that you put into this service are public.

ganGenerativeData documentation built on June 22, 2024, 10:01 a.m.