kummer: Confluent D-Hypergeometric Function

View source: R/kummer.R

kummerR Documentation

Confluent D-Hypergeometric Function

Description

Computes the Kummer's function, or confluent hypergeometric function.

Usage

kummer(a, b, z, eps = 1e-06)

Arguments

a

numeric.

b

numeric

z

numeric vector.

eps

numeric. Precision for the sum (default 1e-06).

Details

The Kummer's confluent hypergeometric function is given by:

\displaystyle{_1 F_1\left(a, b; z\right) = \sum_{n = 0}^{+\infty}{ \frac{ (a)_n }{ (b)_n } \frac{z^n}{n!} }}

where (z)_p is the Pochhammer symbol (see pochhammer).

The eps argument gives the required precision for its computation. It is the attr(, "epsilon") attribute of the returned value.

Value

A numeric value: the value of the Kummer's function, with two attributes attr(, "epsilon") (precision of the result) and attr(, "k") (number of iterations).

Author(s)

Pierre Santagostini, Angélina El Ghaziri, Nizar Bouhlel

References

El Ghaziri, A., Bouhlel, N., Sapoukhina, N., Rousseau, D., On the importance of non-Gaussianity in chlorophyll fluorescence imaging. Remote Sensing 15(2), 528 (2023). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3390/rs15020528")}


gaussratiovegind documentation built on June 16, 2025, 5:09 p.m.