rnormratio | R Documentation |
Simulate data from a ratio of two independent Gaussian distributions.
rnormratio(n, bet, rho, delta)
n |
integer. Number of observations. If |
bet , rho , delta |
numeric values. The parameters |
Let two random variables
X \sim N(\mu_x, \sigma_x)
and Y \sim N(\mu_y, \sigma_y)
with probability densities f_X
and f_Y
.
The parameters of the distribution of the ratio Z = \frac{X}{Y}
are:
\displaystyle{\beta = \frac{\mu_x}{\mu_y}}
,
\displaystyle{\rho = \frac{\sigma_y}{\sigma_x}}
,
\displaystyle{\delta_y = \frac{\sigma_y}{\mu_y}}
.
\mu_x
, \sigma_x
, \mu_y
and \sigma_y
are computed from
\beta
, \rho
and \delta_y
(by fixing arbitrarily \mu_x = 1
)
and two random samples \left( x_1, \dots, x_n \right)
and \left( y_1, \dots, y_n \right)
are simulated.
Then \displaystyle{\left( \frac{x_1}{y_1}, \dots, \frac{x_n}{y_n} \right)}
is returned.
A numeric vector: the produced sample.
Pierre Santagostini, Angélina El Ghaziri, Nizar Bouhlel
El Ghaziri, A., Bouhlel, N., Sapoukhina, N., Rousseau, D., On the importance of non-Gaussianity in chlorophyll fluorescence imaging. Remote Sensing 15(2), 528 (2023). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3390/rs15020528")}
Marsaglia, G. 2006. Ratios of Normal Variables. Journal of Statistical Software 16. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v016.i04")}
Díaz-Francés, E., Rubio, F.J., On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables. Stat Papers 54, 309–323 (2013). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s00362-012-0429-2")}
dnormratio()
: probability density of a normal ratio.
pnormratio()
: probability distribution function.
estparnormratio()
: parameter estimation.
# First example
beta1 <- 0.15
rho1 <- 5.75
delta1 <- 0.22
rnormratio(20, bet = beta1, rho = rho1, delta = delta1)
# Second example
beta2 <- 0.24
rho2 <- 4.21
delta2 <- 0.25
rnormratio(20, bet = beta2, rho = rho2, delta = delta2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.