apply_time | R Documentation |
This generic function applies a function on pixel time series of a data cube, an R array, or other classes if implemented. The resulting object is expected to have the same spatial and temporal shape as the input, i.e., no reduction is performed.
apply_time(x, ...)
x |
input data |
... |
additional arguments passed to method implementations |
return value and type depend on the class of x
apply_time.cube
apply_time.array
# 1. input is data cube
# create image collection from example Landsat data only
# if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {
L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)
create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,
bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")
L8.cube = raster_cube(L8.col, v)
L8.cube = select_bands(L8.cube, c("B04", "B05"))
L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI")
# Apply a user defined R function
apply_time(L8.ndvi, names="NDVI_residuals",
FUN=function(x) {
y = x["NDVI",]
if (sum(is.finite(y)) < 3) {
return(rep(NA,ncol(x)))
}
t = 1:ncol(x)
return(predict(lm(y ~ t)) - x["NDVI",])})
# 2. input is array
d <- c(4,16,32,32)
x <- array(rnorm(prod(d)), d)
z <- apply_time(x, function(v) {
y = matrix(NA, ncol=ncol(v), nrow=2)
y[1,] = (v[1,] + v[2,]) / 2
y[2,] = (v[3,] + v[4,]) / 2
y
})
dim(z)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.