The GOZH(geographically optimal zones-based heterogeneity) model
generates the optimal spatial zone based on the binary classification of the decision tree and then calculates the power
of determinants. The LESH(locally explained stratified heterogeneity model)
based on GOZH model and combined with additive shapely theory to reasonably allocate variable interaction's power of determinants.
In this vignette, we use ndvi
data in gdverse
package to demonstrate the spatial heterogeneity explanation based on GOZH
and LESH model.
library(tidyverse) library(gdverse) data("ndvi") head(ndvi) ## # A tibble: 6 × 7 ## NDVIchange Climatezone Mining Tempchange Precipitation GDP Popdensity ## <dbl> <chr> <fct> <dbl> <dbl> <dbl> <dbl> ## 1 0.116 Bwk low 0.256 237. 12.6 1.45 ## 2 0.0178 Bwk low 0.273 214. 2.69 0.801 ## 3 0.138 Bsk low 0.302 449. 20.1 11.5 ## 4 0.00439 Bwk low 0.383 213. 0 0.0462 ## 5 0.00316 Bwk low 0.357 205. 0 0.0748 ## 6 0.00838 Bwk low 0.338 201. 0 0.549
gozh.uvi = gozh(NDVIchange ~ ., data = ndvi) gozh.uvi ## *** Geographically Optimal Zones-based Heterogeneity Model ## Factor Detector ## ## | variable | Q-statistic | P-value | ## |:-------------:|:-----------:|:--------:| ## | Precipitation | 0.87255056 | 4.52e-10 | ## | Climatezone | 0.82129550 | 2.50e-10 | ## | Tempchange | 0.33324945 | 1.12e-10 | ## | Popdensity | 0.22321863 | 3.00e-10 | ## | Mining | 0.13982859 | 6.00e-11 | ## | GDP | 0.09170153 | 3.96e-10 | plot(gozh.uvi)
gozh.bi = gozh(NDVIchange ~ ., data = ndvi, type = 'interaction') gozh.bi ## *** Geographically Optimal Zones-based Heterogeneity Model ## Interaction Detector ## ## | Interactive variable | Interaction | ## |:---------------------------:|:------------------:| ## | Climatezone ∩ Mining | Weaken, uni- | ## | Climatezone ∩ Tempchange | Weaken, uni- | ## | Climatezone ∩ Precipitation | Enhance, bi- | ## | Climatezone ∩ GDP | Enhance, bi- | ## | Climatezone ∩ Popdensity | Enhance, bi- | ## | Mining ∩ Tempchange | Enhance, bi- | ## | Mining ∩ Precipitation | Weaken, uni- | ## | Mining ∩ GDP | Enhance, bi- | ## | Mining ∩ Popdensity | Enhance, bi- | ## | Tempchange ∩ Precipitation | Enhance, bi- | ## | Tempchange ∩ GDP | Enhance, nonlinear | ## | Tempchange ∩ Popdensity | Enhance, bi- | ## | Precipitation ∩ GDP | Enhance, bi- | ## | Precipitation ∩ Popdensity | Enhance, bi- | ## | GDP ∩ Popdensity | Weaken, uni- | plot(gozh.bi)
lesh.m = lesh(NDVIchange ~ ., data = ndvi, cores = 6) lesh.m ## *** Locally Explained Stratified Heterogeneity Model ## ## | Interactive variable | Interaction | Variable1 SPD | Variable2 SPD | ## |:---------------------------:|:------------------:|:-------------:|:-------------:| ## | Climatezone ∩ Mining | Weaken, uni- | 0.75353265 | 0.06776285 | ## | Climatezone ∩ Tempchange | Weaken, uni- | 0.64437728 | 0.17691822 | ## | Climatezone ∩ Precipitation | Enhance, bi- | 0.39405554 | 0.48986045 | ## | Climatezone ∩ GDP | Enhance, bi- | 0.79843017 | 0.05246998 | ## | Climatezone ∩ Popdensity | Enhance, bi- | 0.74240657 | 0.11069841 | ## | Mining ∩ Tempchange | Enhance, bi- | 0.10161351 | 0.31023743 | ## | Mining ∩ Precipitation | Weaken, uni- | 0.05886173 | 0.81368883 | ## | Mining ∩ GDP | Enhance, bi- | 0.12735177 | 0.09306564 | ## | Mining ∩ Popdensity | Enhance, bi- | 0.13123771 | 0.21760488 | ## | Tempchange ∩ Precipitation | Enhance, bi- | 0.16187198 | 0.73291613 | ## | Tempchange ∩ GDP | Enhance, nonlinear | 0.35277116 | 0.08443737 | ## | Tempchange ∩ Popdensity | Enhance, bi- | 0.28786726 | 0.15633619 | ## | Precipitation ∩ GDP | Enhance, bi- | 0.84089496 | 0.04445297 | ## | Precipitation ∩ Popdensity | Enhance, bi- | 0.79267181 | 0.09507756 | ## | GDP ∩ Popdensity | Weaken, uni- | 0.06828443 | 0.15493420 | plot(lesh.m, pie = TRUE, scatter = TRUE)
Compared to GOZH Interaction Detector, LESH only has a decomposition of the interactive contribution of variables, and the rest remains consistent.
gdverse supports modifications to the default ploting results, such as adding subfigure annotations and adjusting the size of the text on the x-y axis:
plot(lesh.m, pie = TRUE, scatter = TRUE, pielegend_x = 0.98, pielegend_y = 0.15) + patchwork::plot_annotation(tag_levels = 'a', tag_prefix = '(', tag_suffix = ')', tag_sep = '', theme = theme(plot.tag = element_text(family = "serif"))) & ggplot2::theme(axis.text.y = element_text(family = 'serif',size = 15), axis.text.x = element_text(family = 'serif',size = 15, angle = 30,vjust = 0.85,hjust = 0.75), axis.title = element_text(family = 'serif',size = 15))
And you can only look at the contribution part of the variable interaction:
plot(lesh.m, pie = TRUE, scatter = FALSE)
By accessing the concrete result through lesh.m$interaction
, which returns a tibble
.
lesh.m$interaction ## # A tibble: 15 × 8 ## variable1 variable2 Interaction Variable1 Q-statisti…¹ Variable2 Q-statisti…² ## <chr> <chr> <chr> <dbl> <dbl> ## 1 Climatezone Mining Weaken, uni- 0.821 0.140 ## 2 Climatezone Tempchange Weaken, uni- 0.821 0.333 ## 3 Climatezone Precipitation Enhance, bi- 0.821 0.873 ## 4 Climatezone GDP Enhance, bi- 0.821 0.0917 ## 5 Climatezone Popdensity Enhance, bi- 0.821 0.223 ## 6 Mining Tempchange Enhance, bi- 0.140 0.333 ## 7 Mining Precipitation Weaken, uni- 0.140 0.873 ## 8 Mining GDP Enhance, bi- 0.140 0.0917 ## 9 Mining Popdensity Enhance, bi- 0.140 0.223 ## 10 Tempchange Precipitation Enhance, bi- 0.333 0.873 ## 11 Tempchange GDP Enhance, nonlinear 0.333 0.0917 ## 12 Tempchange Popdensity Enhance, bi- 0.333 0.223 ## 13 Precipitation GDP Enhance, bi- 0.873 0.0917 ## 14 Precipitation Popdensity Enhance, bi- 0.873 0.223 ## 15 GDP Popdensity Weaken, uni- 0.0917 0.223 ## # ℹ abbreviated names: ¹`Variable1 Q-statistics`, ²`Variable2 Q-statistics` ## # ℹ 3 more variables: `Variable1 and Variable2 interact Q-statistics` <dbl>, ## # `Variable1 SPD` <dbl>, `Variable2 SPD` <dbl>
Use lesh.m$spd_lesh
to access the SHAP power of determinants:
lesh.m$spd_lesh ## # A tibble: 6 × 2 ## variable spd_theta ## <chr> <dbl> ## 1 Precipitation 0.218 ## 2 Climatezone 0.176 ## 3 Tempchange 0.0482 ## 4 Popdensity 0.0262 ## 5 Mining 0.0158 ## 6 GDP 0.0115
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.