library(sf) library(tidyverse) library(gdverse) depression = system.file('extdata/Depression.csv',package = 'gdverse') %>% read_csv() %>% st_as_sf(coords = c('X','Y'), crs = 4326) depression ## Simple feature collection with 1072 features and 11 fields ## Geometry type: POINT ## Dimension: XY ## Bounding box: xmin: -83.1795 ymin: 32.11464 xmax: -78.6023 ymax: 35.17354 ## Geodetic CRS: WGS 84 ## # A tibble: 1,072 × 12 ## Depression_prevelence PopulationDensity Population65 NoHealthInsurance Neighbor_Disadvantage ## * <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 23.1 61.5 22.5 7.98 -0.0525 ## 2 22.8 58.3 16.8 11.0 -0.254 ## 3 23.2 35.9 24.5 9.31 -0.0540 ## 4 21.8 76.1 21.8 13.2 0.0731 ## 5 20.7 47.3 22.0 11 0.763 ## 6 21.3 32.5 19.2 13.0 0.422 ## 7 22 36.9 19.2 10.8 0.113 ## 8 21.2 61.5 15.9 8.57 -0.154 ## 9 22.7 67.2 15.7 17.8 -0.320 ## 10 20.6 254. 11.3 12.7 0.457 ## # ℹ 1,062 more rows ## # ℹ 7 more variables: Beer <dbl>, MentalHealthPati <dbl>, NatureParks <dbl>, Casinos <dbl>, ## # DrinkingPlaces <dbl>, X.HouseRent <dbl>, geometry <POINT [°]>
set.seed(123456789) gmi = sdsfun::moran_test(depression) gmi ## *** global moran test
Variable MoranI EI VarI zI pI
Depression_prevelence 0.339557*** -0.0009337 0.0003192 19.06 2.892e-81
PopulationDensity 0.365364*** -0.0009337 0.0003192 20.5 1.052e-93
Population65 0.180436*** -0.0009337 0.0003192 10.15 1.641e-24
NoHealthInsurance 0.0791199*** -0.0009337 0.0003192 4.48 3.724e-06
Neighbor_Disadvantage 0.113811*** -0.0009337 0.0003192 6.422 6.723e-11
Beer 0.0902263*** -0.0009337 0.0003192 5.102 1.68e-07
MentalHealthPati 0.19318*** -0.0009337 0.0003192 10.86 8.534e-28
NatureParks 0.0895589*** -0.0009337 0.0003192 5.065 2.045e-07 Casinos 0.243212*** -0.0009337 0.0003192 13.66 8.28e-43 DrinkingPlaces 0.239054*** -0.0009337 0.0003192 13.43 1.97e-41 X.HouseRent 0.141887*** -0.0009337 0.0003192 7.993 6.562e-16
The global Moran'I Index of Depression Prevelence is 0.339557
and the P value is 2.892e-81
, which shows that Depression Prevelence has a moderate level of positive spatial autocorrelation in the global scale.
depression_opgd = opgd(Depression_prevelence ~ ., data = depression, cores = 12) depression_opgd ## *** Optimal Parameters-based Geographical Detector ## Factor Detector ## ## | variable | Q-statistic | P-value | ## |:---------------------:|:-----------:|:------------:| ## | Neighbor_Disadvantage | 0.13979930 | 4.960000e-10 | ## | PopulationDensity | 0.09186679 | 2.328052e-01 | ## | Population65 | 0.08956911 | 1.000000e+00 | ## | NoHealthInsurance | 0.06779068 | 6.479536e-01 | ## | NatureParks | 0.05963161 | 1.000000e+00 | ## | DrinkingPlaces | 0.05411512 | 1.000000e+00 | ## | X.HouseRent | 0.03439383 | 1.000000e+00 | ## | Beer | 0.01410217 | 1.000000e+00 | ## | MentalHealthPati | 0.01295799 | 1.000000e+00 | ## | Casinos | 0.01207694 | 1.000000e+00 |
You can access the detailed q statistics by depression_opgd$factor
depression_opgd$factor ## # A tibble: 10 × 3 ## variable `Q-statistic` `P-value` ## <chr> <dbl> <dbl> ## 1 Neighbor_Disadvantage 0.140 4.96e-10 ## 2 PopulationDensity 0.0919 2.33e- 1 ## 3 Population65 0.0896 1.00e+ 0 ## 4 NoHealthInsurance 0.0678 6.48e- 1 ## 5 NatureParks 0.0596 1.00e+ 0 ## 6 DrinkingPlaces 0.0541 1.00e+ 0 ## 7 X.HouseRent 0.0344 1.00e+ 0 ## 8 Beer 0.0141 1 e+ 0 ## 9 MentalHealthPati 0.0130 1.00e+ 0 ## 10 Casinos 0.0121 1 e+ 0
SPADE explicitly considers the spatial variance by assigning the weight of the influence based on spatial distribution and also minimizes the influence of the number of levels on PD values by using the multilevel discretization and considering information loss due to discretization.
When response variable has a strong spatial dependence, maybe SPADE is a best choice.
The biggest difference between SPADE and native GD and OPGD in actual modeling is that SPADE requires a spatial weight matrix to calculate spatial variance.
I have also developed the sdsfun package to facilitate the construction of spatial weight matrices, which requires an input of an sf object.
In spade
function, when you not provide a spatial weight matrix, it will use 1st order inverse distance weight by default, which can be created by sdsfun::inverse_distance_swm()
.
wt1 = sdsfun::inverse_distance_swm(depression)
You can also use gravity model weight by assigning the power
parameter in sdsfun::inverse_distance_swm()
function.
wt2 = sdsfun::inverse_distance_swm(depression,power = 2)
Or using a spatial weight matrix based on geospatial contiguity.
wt3 = sdsfun::spdep_contiguity_swm(depression, k = 8)
Or using a spatial weight matrix based on distance kernel functions.
wt4 = sdsfun::spdep_distance_swm(depression, k = 6, kernel = 'gaussian')
The test of SPADE model significance in gdverse
is achieved by randomization null hypothesis use a pseudo-p value, this calculation is very time-consuming. Default gdverse
sets the permutations
parameter to 0 and does not calculate the pseudo-p value. If you want to calculate the pseudo-p value, specify the permutations
parameter to a number such as 99,999,9999, etc.
In the following section we will execute SPADE model using spatial weight matrix wt1
.
depression_spade = spade(Depression_prevelence ~ ., data = depression, wt = wt1, cores = 12) depression_spade ## *** Spatial Association Detector ## ## | variable | Q-statistic | P-value | ## |:---------------------:|:-----------:|:-----------------:| ## | PopulationDensity | 0.21532238 | No Pseudo-P Value | ## | DrinkingPlaces | 0.18564821 | No Pseudo-P Value | ## | Casinos | 0.17438646 | No Pseudo-P Value | ## | Neighbor_Disadvantage | 0.17235706 | No Pseudo-P Value | ## | NatureParks | 0.17019859 | No Pseudo-P Value | ## | Population65 | 0.15592529 | No Pseudo-P Value | ## | Beer | 0.09506759 | No Pseudo-P Value | ## | MentalHealthPati | 0.07956353 | No Pseudo-P Value | ## | NoHealthInsurance | 0.07753293 | No Pseudo-P Value | ## | X.HouseRent | 0.05621546 | No Pseudo-P Value | plot(depression_spade, slicenum = 6)
You can also access the detailed q statistics by depression_spade$factor
depression_spade$factor ## # A tibble: 10 × 3 ## variable `Q-statistic` `P-value` ## <chr> <dbl> <chr> ## 1 PopulationDensity 0.215 No Pseudo-P Value ## 2 DrinkingPlaces 0.186 No Pseudo-P Value ## 3 Casinos 0.174 No Pseudo-P Value ## 4 Neighbor_Disadvantage 0.172 No Pseudo-P Value ## 5 NatureParks 0.170 No Pseudo-P Value ## 6 Population65 0.156 No Pseudo-P Value ## 7 Beer 0.0951 No Pseudo-P Value ## 8 MentalHealthPati 0.0796 No Pseudo-P Value ## 9 NoHealthInsurance 0.0775 No Pseudo-P Value ## 10 X.HouseRent 0.0562 No Pseudo-P Value
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.