Description Usage Arguments Details Value Examples
Run Q-Gen (generalized QuSAGE) algorithm using gene level statistics
1 |
model.results |
object returned by |
gene.sets |
list of gene sets. See |
annotations |
A data frame of additional annotations for the gene sets.
See |
This function takes the gene level comparison estimates and test
statistics contained in the object returned by
genModelResults and runs the Q-Gen algorithm across all of
the comparisons. The VIFs are estimated using the raw residuals, which are
also contained in the output of genModelResults.
qusage.results Tall formatted matrix of results
lower.ci Matrix of gene level lower 95% confidence intervals
upper.ci Matrix gene level upper 95% confidence intervals
gene.sets List of gene sets provided to gene.sets
annotations data frame of gene set annotations. Default is
NULL.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # Example data
data(tb.expr)
data(tb.design)
# Use first 100 probes to demonstrate
dat <- tb.expr[1:100,]
# Create desInfo object
meta.data <- metaData(y = dat, design = tb.design, data.type = "microarray",
columnname = "columnname", long = TRUE, subject.id = "monkey_id",
baseline.var = "timepoint", baseline.val = 0, time.var = "timepoint",
sample.id = "sample_id")
# Generate lmFit and eBayes (limma) objects needed for genModelResults
tb.design$Group <- paste(tb.design$clinical_status,tb.design$timepoint, sep = "")
grp <- factor(tb.design$Group)
design2 <- model.matrix(~0+grp)
colnames(design2) <- levels(grp)
dupcor <- limma::duplicateCorrelation(dat, design2, block = tb.design$monkey_id)
fit <- limma::lmFit(dat, design2, block = tb.design$monkey_id,
correlation = dupcor$consensus.correlation)
contrasts <- limma::makeContrasts(A_20vsPre = Active20-Active0, A_42vsPre = Active42-Active0,
levels=design2)
fit2 <- limma::contrasts.fit(fit, contrasts)
fit2 <- limma::eBayes(fit2, trend = FALSE)
# Create model results object for runQgen
model.results <- genModelResults(y = dat, data.type = "microarray", object = fit2, lm.Fit = fit,
method = "limma")
# Run Q-Gen on baylor modules
data(modules)
qus.results <- runQgen(model.results, modules)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.