gencve: General Cross Validation Engine

Engines for cross-validation of many types of regression and class prediction models are provided. These engines include built-in support for 'glmnet', 'lars', 'plus', 'MASS', 'rpart', 'C50' and 'randomforest'. It is easy for the user to add other regression or classification algorithms. The 'parallel' package is used to improve speed. Several data generation algorithms for problems in regression and classification are provided.

AuthorA. I McLeod
Date of publication2016-04-12 00:56:56
MaintainerA. I. McLeod <aimcleod@uwo.ca>
LicenseGPL (>= 2)
Version0.3
http://www.stats.uwo.ca/faculty/aim

View on CRAN

Man pages

cgcv: Estimate Misclassification Rate Using d-fold Cross-Validation...

churn: Customer Churn Data

Detroit: Detroit Homicide Data for 1961-73

dShao: Shao Holdout Sample Size for Linear Regression Variable...

featureSelect: Feature Select For Wide Data

fires: Forest Fires in Montesinho Natural Park

gcv: Estimate EPE Using Delete-d Cross-Validation

gencve-package: General Cross Validation Engine General Cross Validation...

kNN_LOOCV: Select k with Leave-one-out CV

kNN_MLE: MLE k in kNN

kyphosis: Data on Children who have had Corrective Spinal Surgery

logloss: log-loss function for multiclass prediction

mae: Mean Absolute Error

mape: Mean Absolute Percentage Error

meatspec: Meat Spectrometry to Determine Fat Content

misclassificationrate: Misclassification Rate for Class Prediction

mse: Mean Square Error Loss

pollution: Pollution Data from McDonald and Schwing

prostate: Prostate Cancer Data

rdigitsBFOS: BFOS Digit Recognition Problem

regal: Regression EPE for All Implemented Methods

rmix: Random Mixture Classification Example

rxor: Random XOR Samples

ShaoReg: Synthetic Regression Data

SinghTest: Singh Prostate Microarray Test Data

SinghTrain: Singh Prostate Microarray Training Data

smape: Mean Absolute Percentage Error

vifx: Variance Inflation Factor

yhat_CART: CART regression prediction

yhat_gel: Elastic Net Regression Prediction

yhat_lars: Fit LASSO Regression using Mallows Cp and Predict

yhat_lm: Linear Predictor using Least-Squares Regression

yhat_nn: Nearest Neighbour Prediction

yhat_plus: SCAD or MCP Regression Prediction

yhat_RF: Fit Random Forest Regression Predictor

yhat_step: Backward Stagewise Regression with AIC or BIC

yhat_SVM: Support Vector Machine Regression Prediction

yh_C50: C50 Prediction

yh_CART: CART Prediction

yh_kNN: kNN or NN prediction

yh_lda: LDA predictions

yh_logistic: Logistic Regression and Regularized Logistic Regression...

yh_NB: Naive Bayes Prediction

yh_qda: QDA Prediction

yh_RF: Random Forest Prediction

yh_svm: Support Vector Machine Prediction

Files in this package

gencve
gencve/inst
gencve/inst/doc
gencve/inst/doc/01-Overview.pdf
gencve/inst/doc/04-rmix.pdf
gencve/inst/doc/02-ShaoRegression.pdf
gencve/inst/doc/03-DigitRecognitionProblem.pdf
gencve/NAMESPACE
gencve/data
gencve/data/churn.RData
gencve/data/meatspec.rda
gencve/data/Detroit.rda
gencve/data/kyphosis.tab.gz
gencve/data/SinghTest.rda
gencve/data/SinghTrain.rda
gencve/data/prostate.rda
gencve/data/fires.rda
gencve/data/pollution.rda
gencve/R
gencve/R/yhat_step.R gencve/R/yh_svm.R gencve/R/vifx.R gencve/R/yh_qda.R gencve/R/cgcv.R gencve/R/kNN_MLE.R gencve/R/mape.R gencve/R/gcv.R gencve/R/dShao.R gencve/R/featureSelect.R gencve/R/mse.R gencve/R/ShaoReg.R gencve/R/yhat_lars.R gencve/R/regal.R gencve/R/smape.R gencve/R/mae.R gencve/R/yhat_gel.R gencve/R/yhat_RF.R gencve/R/yh_kNN.R gencve/R/misclassificationrate.R gencve/R/yh_logistic.R gencve/R/yh_CART.R gencve/R/rdigitsBFOS.R gencve/R/yhat_plus.R gencve/R/yhat_SVM.R gencve/R/yh_lda.R gencve/R/yhat_nn.R gencve/R/rmix.R gencve/R/rxor.R gencve/R/yhat_lm.R
gencve/MD5
gencve/build
gencve/build/partial.rdb
gencve/DESCRIPTION
gencve/man
gencve/man/yh_logistic.Rd gencve/man/rdigitsBFOS.Rd gencve/man/yhat_plus.Rd gencve/man/kyphosis.Rd gencve/man/mape.Rd gencve/man/yh_NB.Rd gencve/man/yh_RF.Rd gencve/man/yhat_lars.Rd gencve/man/dShao.Rd gencve/man/yh_lda.Rd gencve/man/yhat_gel.Rd gencve/man/rxor.Rd gencve/man/yhat_lm.Rd gencve/man/churn.Rd gencve/man/mae.Rd gencve/man/fires.Rd gencve/man/Detroit.Rd gencve/man/yh_C50.Rd gencve/man/yh_CART.Rd gencve/man/yhat_SVM.Rd gencve/man/yhat_RF.Rd gencve/man/kNN_LOOCV.Rd gencve/man/prostate.Rd gencve/man/meatspec.Rd gencve/man/rmix.Rd gencve/man/yhat_nn.Rd gencve/man/kNN_MLE.Rd gencve/man/SinghTest.Rd gencve/man/yhat_step.Rd gencve/man/gencve-package.Rd gencve/man/yh_svm.Rd gencve/man/yh_qda.Rd gencve/man/yhat_CART.Rd gencve/man/yh_kNN.Rd gencve/man/ShaoReg.Rd gencve/man/mse.Rd gencve/man/regal.Rd gencve/man/smape.Rd gencve/man/pollution.Rd gencve/man/SinghTrain.Rd gencve/man/cgcv.Rd gencve/man/gcv.Rd gencve/man/featureSelect.Rd gencve/man/misclassificationrate.Rd gencve/man/logloss.Rd gencve/man/vifx.Rd

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.