Nothing
#' Gender Empowerment Measure (GEM)
#'
#' Computes the Gender Empowerment Measure (GEM) based on the provided dataset.
#' The GEM measures gender inequality in political representation, professional positions, and income.
#'
#' @param data A data frame containing the required metrics for GEM computation.
#' The data frame must include the following columns: \code{female_parliament_seats}, \code{female_professional_positions}, and \code{female_to_male_earned_income_ratio}.
#'
#' @return A data frame with two columns: \code{country} and \code{GEM}, representing the GEM values for each country.
#'
#' @examples
#' data(real_data_GEM) # Load example dataset
#' gem_results <- gender_empowerment_measure(real_data_GEM)
#' print(gem_results)
#'
#' @export
gender_empowerment_measure <- function(data) {
# Check input data for required columns
required_columns <- c("female_parliament_seats", "female_professional_positions", "female_to_male_earned_income_ratio")
if (!all(required_columns %in% colnames(data))) {
stop("The input data must contain the required columns for GEM calculation.")
}
# Calculate GEM
GEM <- (data$female_parliament_seats + data$female_professional_positions + data$female_to_male_earned_income_ratio) / 3
# Create a data frame with required columns
result_data <- data.frame(
country = data$country,
GEM = GEM
)
return(result_data)
}
#' Original Data for Gender Empowerment Measure (GEM)
#'
#' A dataset containing observed values for the GEM analysis. This data includes metrics for evaluating gender disparities in political representation, professional positions, and income across different countries.
#'
#' @format A data frame with 191 rows and 4 columns:
#' \describe{
#' \item{country}{A character vector representing the name of the country.}
#' \item{female_parliament_seats}{A numeric vector representing the ratio of parliamentary seats occupied by females in the respective country. Measured as a proportion (0-1).}
#' \item{female_professional_positions}{A numeric vector representing the ratio of professional and technical job roles occupied by females in the respective country. Measured as a proportion (0-1).}
#' \item{female_to_male_earned_income_ratio}{A numeric vector representing the income ratio for females in the respective country in comparison to males. Measured as a proportion (0-1), where 1 indicates equal income with males.}
#' }
#' @source Data obtained from \href{https://www.kaggle.com/dsv/6359326}{Kaggle}.
#' @name real_data_GEM
#' @docType data
#' @usage data(real_data_GEM)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.