Probabilty density function of mixture model.

Share:

Description

Computes pdf of the mixture model.

Usage

1
dmixt(x, phi, spec1, arg1, spec2, arg2, log = FALSE)

Arguments

x

scalar or vector of values to compute the pdf.

phi

the value of φ parameter, φ>0.

spec1

a character string specifying the first parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal).

arg1

list of arguments/parameters of the first parent distribution.

spec2

a character string specifying the second parent distribution (for example, "exp" if the parent distribution corresponds to the exponential).

arg2

list of arguments/parameters of the second parent distribution.

log

logical; if TRUE, log(pdf) are returned.

Details

The pdf of mixture model with parameter phi has a general form of:

f(x) = \frac{1}{1+φ} ≤ft( g_{1}(x) + φ g_{2}(x)\right)

where x follows the support of parent distributions, φ is the weight component and g_{i}(x) for i=1,2 are the pdfs of first and second parent distributions, respectively.

Value

An object of the same length as x, giving the pdf values computed at x.

Author(s)

Shaiful Anuar Abu Bakar

References

S.A. Abu Bakar, S. Nadarajah, Z.A. ABSL Kamarul Adzhar, I. Mohamed. gendist: An R package for generated probability distribution models, submitted.
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 71-110.

Examples

1
2
3
x=runif(10, min=0, max=1)
y=dmixt(x, phi=0.5, spec1="lnorm", arg1=list(meanlog=1,sdlog=2), spec2="exp", 
        arg2=list(rate=2) )