Nothing
## ----include=FALSE------------------------------------------------------------
knitr::opts_chunk$set(eval = FALSE, echo = TRUE)
## -----------------------------------------------------------------------------
# library(geostan)
# data(georgia)
# A <- shape2mat(georgia, "B")
# car_list <- prep_car_data(A, style = "WCAR")
#
# # prior distributions (to match the Stan model below)
# prior_list <- list(intercept = normal(0, 5),
# beta = normal(0, 5),
# sigma = student_t(10, 0, 5)
# )
#
# # an auto-model
# # y = mu + rho * C (y - mu) + error
# # mu = alpha + beta * .x
# # y = log(income); x = log(population)
# # x will be centered: .x = x - mean(x)
#
# fit <- stan_car(log(income / 10e3) ~ log(population / 10e3),
# data = georgia, car = car_list, prior = prior_list, centerx = TRUE)
## -----------------------------------------------------------------------------
# autonormal_file <- "autonormal.stan"
## -----------------------------------------------------------------------------
# library(rstan)
# library(geostan)
# data(georgia)
#
# A <- shape2mat(georgia, "B")
# car_list <- prep_car_data(A, style = "WCAR")
#
# # add data
# ## (centering covariates improves sampling efficiency)
# car_list$y <- log(georgia$income / 10e3)
# car_list$x <- scale(log(georgia$population / 10e3), center = TRUE, scale = FALSE)
# car_list$k <- ncol(car_list$x)
#
# # compile Stan model from file
# autonormal_file <- "autonormal.stan"
# car_model <- stan_model(autonormal_file)
#
# # sample from model
# samples <- sampling(car_model, data = car_list)
## -----------------------------------------------------------------------------
# data(georgia)
# A <- shape2mat(georgia, "B")
# car_list <- prep_car_data(A, style = "WCAR")
#
# # prior distributions (to match the Stan model below)
# prior_list <- list(intercept = normal(0, 5),
# beta = normal(0, 5),
# sigma = student_t(10, 0, 5)
# )
#
#
# # Poisson model
# # y ~ Poisson(pop * exp(mu))
# # mu = alpha + beta * x + phi
# # phi ~ CAR(0, Sigma)
# # y = deaths; x = log(income);
# # x will be centered: .x = x - mean(x)
#
# fit <- stan_car(deaths.male ~ offset(log(pop.at.risk.male)) + log(income / 1e3),
# data = georgia,
# car = car_list,
# centerx = TRUE,
# family = poisson()
# )
## -----------------------------------------------------------------------------
# car_poisson_file <- "car_poisson.stan"
## -----------------------------------------------------------------------------
# library(rstan)
# library(geostan)
# data(georgia)
#
# A <- shape2mat(georgia, "B")
# car_list <- prep_car_data(A, style = "WCAR")
#
# # add data
# car_list$y <- georgia$deaths.male
# car_list$const_offset <- log(georgia$pop.at.risk.male)
# car_list$x <- scale(log(georgia$income / 1e3), center = TRUE, scale = FALSE)
# car_list$k <- ncol(car_list$x)
#
# # compile Stan model from file
# car_poisson_file <- "car_poisson.stan"
# car_poisson <- stan_model(car_poisson_file)
#
# # sample from model
# samples <- sampling(car_poisson, data = car_list)
## -----------------------------------------------------------------------------
# # zero-mean parameterization of the hierarchical CAR model
# car_list <- prep_car_data(shape2mat(georgia, "B", quiet = TRUE))
# fit <- stan_car(deaths.male ~ offset(log(pop.at.risk.male)) + log(income / 1e3),
# data = georgia,
# car = car_list,
# centerx = TRUE,
# family = poisson(),
# zmp = TRUE
# )
## -----------------------------------------------------------------------------
# W <- shape2mat(georgia, "W")
# fit <- stan_sar(log(income / 1e3) ~ log(population / 1e3),
# data = georgia,
# C = W,
# centerx = TRUE,
# iter = 1e3)
## -----------------------------------------------------------------------------
# sar_model_file <- "sar_model.stan"
## -----------------------------------------------------------------------------
# library(geostan)
# library(rstan)
# data(georgia)
#
# W <- shape2mat(georgia, "W")
# sar_list <- prep_sar_data(W)
#
# # add data
# sar_list$y <- log(georgia$income / 1e3)
# sar_list$x <- scale(log(georgia$population / 1e3), center = TRUE, scale = FALSE)
# sar_list$k <- ncol(sar_list$x)
#
# # compile Stan model from file
# sar_model_file <- "sar_model.stan"
# sar_model <- stan_model(sar_model_file)
#
# # sample from model
# samples <- sampling(sar_model, data = sar_list, iter = 1e3)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.