Nothing
#' properties of 20 river catchments
#'
#' six different (three discrete, three continuous) measurements for
#' twenty fictitious river catchments, containing their dominant
#' lithology (categorical data), stratigraphic age (ordinal data),
#' number of springs (count data), the pH of the river water
#' (Cartesian quantity), its Ca/Mg ratio (Jeffreys quantity) and the
#' percentage covered by vegetation (proportion).
#'
#' @name catchments
#' @docType data
#' @keywords data
#' @examples
#' data(catchments,package='geostats')
#' hist(catchments$pH)
NULL
#' detrital zircon U-Pb data
#'
#' Detrital zircon U-Pb data of 13 sand samples from China.
#'
#' @name DZ
#' @docType data
#' @keywords data
#' @references Vermeesch, P. ``Multi-sample comparison of detrital age
#' distributions.'' Chemical Geology 341 (2013): 140-146.
#' @examples
#' data(DZ,package='geostats')
#' qqplot(DZ[['Y']],DZ[['5']])
NULL
#' Rb-Sr data
#'
#' Synthetic dataset of 8 Rb-Sr analysis that form a 1Ga isochron.
#'
#' @name rbsr
#' @docType data
#' @keywords data
#' @examples
#' data(rbsr,package='geostats')
#' plot(rbsr[,'RbSr'],rbsr[,'SrSr'])
#' fit <- lm(SrSr ~ RbSr,data=rbsr)
#' abline(fit)
NULL
#' declustered earthquake data
#'
#' Dataset of 28267 earthquakes between 1769 and 2016, with
#' aftershocks and precursor events removed.
#'
#' @name declustered
#' @docType data
#' @keywords data
#' @references Mueller, C.S., 2019. Earthquake catalogs for the USGS
#' national seismic hazard maps. Seismological Research Letters,
#' 90(1), pp.251-261.
#' @examples
#' data(declustered,package='geostats')
#' quakesperyear <- countQuakes(declustered,minmag=5.0,from=1917,to=2016)
#' table(quakesperyear)
NULL
#' earthquake data
#'
#' Dataset of 20000 earthquakes between 2017 and 2000, downloaded from
#' the USGS earthquake database
#' (\url{https://earthquake.usgs.gov/earthquakes/search/}).
#'
#' @name earthquakes
#' @docType data
#' @keywords data
#' @examples
#' data(earthquakes,package='geostats')
#' gutenberg(earthquakes$mag)
NULL
#' Finnish lake data
#'
#' Table of 2327 Finnish lakes, extracted from a hydroLAKES database.
#'
#' @name Finland
#' @docType data
#' @keywords data
#' @references Lehner, B., and Doll, P. (2004), Development and
#' validation of a global database of lakes, reservoirs and
#' wetlands, Journal of Hydrology, 296(1), 1-22, doi:
#' 10.1016/j.jhydrol.2004.03.028.
#' @examples
#' data(Finland,package='geostats')
#' sf <- sizefrequency(Finland$area)
#' size <- sf[,'size']
#' freq <- sf[,'frequency']
#' plot(size,freq,log='xy')
#' fit <- lm(log(freq) ~ log(size))
#' lines(size,exp(predict(fit)))
NULL
#' foram count data
#'
#' Planktic foraminifera counts in surface sediments in the Atlantic ocean.
#'
#' @name forams
#' @docType data
#' @keywords data
#' @examples
#' data(forams,package='geostats')
#' abundant <- forams[,c('quinqueloba','pachyderma','incompta',
#' 'glutinata','bulloides')]
#' other <- rowSums(forams[,c('uvula','scitula')])
#' dat <- cbind(abundant,other)
#' chisq.test(dat)
NULL
#' world population
#'
#' The world population from 1750 until 2014.
#'
#' @name worldpop
#' @docType data
#' @keywords data
#' @examples
#' data(worldpop,package='geostats')
#' plot(worldpop)
NULL
#' British coast
#'
#' A \eqn{512 \times 512} pixel image of the British coastline.
#'
#' @name Britain
#' @docType data
#' @keywords data
#' @examples
#' data(Britain,package='geostats')
#' p <- par(mfrow=c(1,2))
#' image(Britain)
#' fractaldim(Britain)
#' par(p)
NULL
#' rivers on Corsica
#'
#' A \eqn{512 \times 512} pixel image of the river network on Corsica.
#'
#' @name Corsica
#' @docType data
#' @keywords data
#' @examples
#' data(Corsica,package='geostats')
#' p <- par(mfrow=c(1,2))
#' image(Corsica)
#' fractaldim(Corsica)
#' par(p)
NULL
#' fractures
#'
#' A \eqn{512 \times 512} pixel image of a fracture network.
#'
#' @name fractures
#' @docType data
#' @keywords data
#' @examples
#' data(fractures,package='geostats')
#' p <- par(mfrow=c(1,2))
#' image(fractures)
#' fractaldim(fractures)
#' par(p)
NULL
#' A-CN-K compositions
#'
#' Synthetic A (Al\eqn{_2}O\eqn{_3}) -- CN (CaO+Na\eqn{_2}O) -- K
#' (K\eqn{_2}O) data table.
#'
#' @name ACNK
#' @docType data
#' @keywords data
#' @examples
#' data(ACNK,package='geostats')
#' ternary(ACNK,type='p',labels=c(expression('Al'[2]*'O'[3]),
#' expression('CaO+Na'[2]*'O'),
#' expression('K'[2]*'O')))
NULL
#' composition of Namib dune sand
#'
#' Major element compositions of 16 Namib sand samples.
#'
#' @name major
#' @docType data
#' @keywords data
#' @references Vermeesch, P. & Garzanti, E. ``Making geological sense
#' of `Big Data' in sedimentary provenance analysis.'' Chemical
#' Geology 409 (2015): 20-27.
#' @examples
#' data(major,package='geostats')
#' comp <- clr(major)
#' pc <- prcomp(comp)
#' biplot(pc)
NULL
#' composition of 646 oceanic basalts
#'
#' Major element compositions of 227 island arc basalts (IAB), 221 mid
#' oceanic ridge basalts (MORB) and 198 ocean island basalts
#' (OIB). This dataset can be used to train supervised learning
#' algorithms.
#'
#' @name training
#' @docType data
#' @keywords data
#' @references Vermeesch, P. ``Tectonic discrimination diagrams
#' revisited.'' Geochemistry, Geophysics, Geosystems 7.6 (2006).
#' @examples
#' library(MASS)
#' data(training,package='geostats')
#' ld <- lda(x=alr(training[,-1]),grouping=training[,1])
#' pr <- predict(ld)
#' table(training$affinity,pr$class)
NULL
#' composition of a further 147 oceanic basalts
#'
#' Major element compositions of 64 island arc basalts (IAB), 23 mid
#' oceanic ridge basalts (MORB) and 60 ocean island basalts
#' (OIB). This dataset can be used to test supervised learning
#' algorithms.
#'
#' @name test
#' @docType data
#' @keywords data
#' @references Vermeesch, P. ``Tectonic discrimination diagrams
#' revisited.'' Geochemistry, Geophysics, Geosystems 7.6 (2006).
#' @examples
#' library(MASS)
#' data(training,package='geostats')
#' ld <- lda(x=alr(training[,-1]),grouping=training[,1])
#' data(test,package='geostats')
#' pr <- predict(ld,newdata=alr(test[,-1]))
#' table(test$affinity,pr$class)
NULL
#' A-F-M data
#'
#' FeO - (Na\eqn{_2}O + K\eqn{_2}O) - MgO compositions of 630
#' calc-alkali basalts from the Cascade Mountains and 474 tholeiitic
#' basalts from Iceland. Arranged in F-A-M order instead of A-F-M for
#' consistency with the \code{ternary} function.
#'
#' @name FAM
#' @docType data
#' @keywords data
#' @examples
#' data(FAM,package='geostats')
#' ternary(FAM[,-1])
NULL
#' directions of glacial striations
#'
#' Directions (in degrees) of 30 glacial striation measurements from
#' Madagascar.
#'
#' @name striations
#' @docType data
#' @keywords data
#' @examples
#' data(striations,package='geostats')
#' circle.plot(striations,degrees=TRUE)
NULL
#' pebble orientations
#'
#' Orientations (in degrees) of 20 pebbles.
#'
#' @name pebbles
#' @docType data
#' @keywords data
#' @examples
#' data(pebbles,package='geostats')
#' circle.plot(pebbles,degrees=TRUE)
#' m <- meanangle(pebbles,option=0,orientation=TRUE)
#' circle.points(m,degrees=TRUE,pch=22,bg='white')
NULL
#' palaeomagnetic data
#'
#' Ten paired magnetic declination (azimuth) and inclination (dip)
#' measurements, drawn from a von Mises - Fisher distribution with
#' mean vector \eqn{\mu=\{2,2,1\}/3} and concentration parameter
#' \eqn{\kappa=200}.
#'
#' @name palaeomag
#' @docType data
#' @keywords data
#' @examples
#' data(palaeomag,package='geostats')
#' stereonet(trd=palaeomag$decl,plg=palaeomag$incl,degrees=TRUE,show.grid=FALSE)
NULL
#' fault orientation data
#'
#' Ten paired strike and dip measurements (in degrees), drawn from a
#' von Mises - Fisher distribution with mean vector
#' \eqn{\mu=\{-1,-1,1\}/\sqrt{3}} and concentration parameter
#' \eqn{\kappa=100}.
#'
#' @name fault
#' @docType data
#' @keywords data
#' @examples
#' data(fault,package='geostats')
#' stereonet(trd=fault$strike,plg=fault$dip,option=2,degrees=TRUE,show.grid=FALSE)
NULL
#' Meuse river data set
#'
#' This data set gives locations and topsoil heavy metal
#' concentrations, collected in a flood plain of the river Meuse, near
#' the village of Stein (NL). Heavy metal concentrations are from
#' composite samples of an area of approximately 15 m x 15 m. This
#' version of the \code{meuse} dataset is a trimmed down version of
#' the eponymous dataset from the \code{sp} dataset.
#'
#' @name meuse
#' @docType data
#' @keywords data
#' @examples
#' data(meuse,package='geostats')
#' semivariogram(x=meuse$x,y=meuse$y,z=log(meuse$cadmium))
NULL
#' hills
#'
#' 150 X-Y-Z values for a synthetic landscape that consists of three
#' Gaussian mountains.
#'
#' @name hills
#' @docType data
#' @keywords data
#' @examples
#' data(hills,package='geostats')
#' semivariogram(x=hills$X,y=hills$Y,z=hills$Z,model='gaussian')
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.