View source: R/fortify-matrix-maftools.R
fortify_matrix.MAF | R Documentation |
Convert MAF
object to a matrix:
fortify_matrix.MAF
: Extract genomic alterations for genes.
fortify_matrix.MAF_pathways
: Extract genomic alterations for pathways.
tune.MAF()
helps convert MAF
object to a MAF_pathways
object.
## S3 method for class 'MAF'
fortify_matrix(
data,
...,
genes = NULL,
n_top = NULL,
remove_empty_genes = TRUE,
remove_empty_samples = TRUE,
collapse_vars = TRUE,
use_syn = TRUE,
missing_genes = "error",
data_arg = NULL,
call = NULL
)
## S3 method for class 'MAF_pathways'
fortify_matrix(
data,
...,
pathdb = "smgbp",
remove_empty_pathways = TRUE,
remove_empty_samples = TRUE,
data_arg = NULL,
call = NULL
)
data |
A |
... |
These dots are for future extensions and must be empty. |
genes |
An atomic character defines the genes to draw. |
n_top |
A single number indicates how many top genes to be drawn. |
remove_empty_genes |
A single boolean value indicats whether to drop genes without any genomic alterations. |
remove_empty_samples |
A single boolean value indicats whether to drop samples without any genomic alterations. |
collapse_vars |
A single boolean value indicating whether to collapse
multiple alterations in the same sample and gene into a single value
|
use_syn |
A single boolean value indicates whether to include synonymous variants when Classifies SNPs into transitions and transversions. |
missing_genes |
A string, either |
data_arg |
The argument name for |
call |
The execution environment where |
pathdb |
A string of |
remove_empty_pathways |
A single boolean value indicats whether to drop pathways without any genomic alterations. |
For fortify_matrix.MAF
:
gene_summary
: A data frame of gene summary informations. See
maftools::getGeneSummary()
for details.
sample_summary
: A data frame of sample summary informations. See
maftools::getSampleSummary()
for details.
sample_anno
: A data frame of sample clinical informations. See
maftools::getClinicalData()
for details.
variant_weights
: A data frame of variant weights. Each gene in a sample
is assigned a total weight of 1
. When multiple variants occur in the
same gene-sample pair, the weight for each variant reflects its proportion
of the total.
n_genes
: Total number of genes.
n_samples
: Total number of samples.
titv
: A list of data frame with Transitions and Transversions
summary. See maftools::titv()
for details.
The levels of Variant_Classification
will be stored in ggalign_lvls()
.
If they do not exist, alphabetical ordering will be used.
For fortify_matrix.MAF_pathways
:
gene_list
: the pathway contents.
pathway_summary
: pathway summary informations. See
maftools::pathways()
for details.
sample_summary
: sample summary informations. See
maftools::getSampleSummary()
for details.
sample_anno
: sample clinical informations. See
maftools::getClinicalData()
for details.
Other fortify_matrix()
methods:
fortify_matrix.GISTIC()
,
fortify_matrix.default()
,
fortify_matrix.list_upset()
,
fortify_matrix.matrix()
,
fortify_matrix.matrix_oncoplot()
,
fortify_matrix.matrix_upset()
,
fortify_matrix.phylo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.