View source: R/interval_widths.R
| interval_widths | R Documentation |
Create nicely-spaced sets of nested interval widths for use with (e.g.)
the .width parameter of point_interval(), stat_slabinterval(), or
stat_lineribbon():
interval_widths(n) creates a sequence of n interval widths
p_1 \ldots p_n, where 0 < p_i \le \textrm{max} < 1, corresponding
to the masses of nested intervals that are evenly-spaced on a reference
distribution (by default a Normal distribution). This generalizes the idea
behind the default ~66% and 95% intervals in stat_slabinterval() and
50%, 80%, and 95% intervals in stat_lineribbon(): when applied to a Normal
distribution, those intervals are roughly evenly-spaced and allow one to
see deviations from the reference distribution (such as excess kurtosis) when
the resulting intervals are not evenly spaced.
pretty_widths(n) is a variant of interval_widths() with defaults for
max and precision that make the resulting intervals more human-readable,
for labeling purposes.
Intervals should be evenly-spaced on any symmetric reference distribution
when applied to data from distributions with the same shape. If dist
is not symmetric, intervals may only be approximately evenly-spaced above the
median.
interval_widths(n, dist = dist_normal(), max = 1 - 0.1/n, precision = NULL)
pretty_widths(
n,
dist = dist_normal(),
max = if (n <= 4) 0.95 else 1 - 0.1/n,
precision = if (n <= 4) 0.05 else 0.01
)
n |
<numeric> in |
dist |
<distribution>: Reference distribution. |
max |
<numeric> in |
precision |
<numeric | NULL>: If not |
Given the cumulative distribution function F_\textrm{dist}(q)
and the quantile function F^{-1}_\textrm{dist}(p) of dist, the
following is a sequence of n + 1 evenly-spaced quantiles of dist
that could represent upper limits of nested intervals, where
q_i = q_0 + i\frac{q_n - q_0}{n}:
\begin{array}{rcl}
q_0, \ldots, q_n &=& F^{-1}_\textrm{dist}(0.5), \ldots, F^{-1}_\textrm{dist}(0.5 + \frac{\textrm{max}}{2})
\end{array}
interval_widths(n) returns the n interval widths corresponding to the
upper interval limits q_1, \ldots, q_n:
2\cdot\left[F_\textrm{dist}(q_1) - 0.5\right], \ldots, 2\cdot\left[F_\textrm{dist}(q_n) - 0.5\right]
A length-n numeric vector of interval widths (masses) between
0 and 1 (exclusive) in increasing order.
The .width argument to point_interval(), stat_slabinterval(),
stat_lineribbon(), etc.
library(ggplot2)
library(distributional)
interval_widths(1) # 0.9
# this is roughly +/- 1 SD and +/- 2 SD
interval_widths(2) # 0.672..., 0.95
interval_widths(3) # 0.521..., 0.844..., 0.966...
# "pretty" widths may be useful for legends with a small number of widths
pretty_widths(1) # 0.95
pretty_widths(2) # 0.65, 0.95
pretty_widths(3) # 0.50, 0.80, 0.95
# larger numbers of intervals can be useful for plots
ggplot(data.frame(x = 1:20/20)) +
aes(x, ydist = dist_normal((x * 5)^2, 1 + x * 5)) +
stat_lineribbon(.width = pretty_widths(10))
# large numbers of intervals can be used to create gradients -- particularly
# useful if you shade ribbons according to density (not interval width)
# (this is currently experimental)
withr::with_options(list(ggdist.experimental.slab_data_in_intervals = TRUE), print(
ggplot(data.frame(x = 1:20/20)) +
aes(x, ydist = dist_normal((x * 5)^2, 1 + x * 5)) +
stat_lineribbon(
aes(fill_ramp = after_stat(ave(pdf_min, level))),
.width = interval_widths(40),
fill = "gray50"
) +
theme_ggdist()
))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.