position_jitternormal: Jitter points with normally distributed random noise

Description Usage Arguments Examples

View source: R/position-jitternormal.R

Description

ggplot2::geom_jitter() adds random noise to points using a uniform distribution. When many points are plotted, they appear in a rectangle. This position jitters points using a normal distribution instead, resulting in more circular clusters.

Usage

1

Arguments

sd_x, sd_y

Standard deviation to add along the x and y axes. The function uses stats::rnorm() with mean = 0 behind the scenes.

If omitted, defaults to 0.15. As with ggplot2::geom_jitter(), categorical data is aligned on the integers, so a standard deviation of more than 0.2 will spread the data so it's not possible to see the distinction between the categories.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Example data
df <- data.frame(
  x = sample(1:3, 1500, TRUE),
  y = sample(1:3, 1500, TRUE)
)

# position_jitter results in rectangular clusters
ggplot(df, aes(x = x, y = y)) +
  geom_point(position = position_jitter())

# geom_jitternormal results in more circular clusters
ggplot(df, aes(x = x, y = y)) +
  geom_point(position = position_jitternormal())

# You can adjust the standard deviations along both axes
# Tighter circles
ggplot(df, aes(x = x, y = y)) +
  geom_point(position = position_jitternormal(sd_x = 0.08, sd_y = 0.08))

# Oblong shapes
ggplot(df, aes(x = x, y = y)) +
  geom_point(position = position_jitternormal(sd_x = 0.2, sd_y = 0.08))

# Only add random noise to one dimension
ggplot(df, aes(x = x, y = y)) +
  geom_point(
    position = position_jitternormal(sd_x = 0.15, sd_y = 0),
    alpha = 0.1
  )

Example output

Loading required package: ggplot2

ggforce documentation built on March 5, 2021, 5:09 p.m.